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abstract

The holographic renormalization group (RG) is reviewed in a self-contained manner.
The holographic RG is based on the idea that the radial coordinate of a space-time
with asymptotically AdS geometry can be identified with the RG flow parameter of
the boundary field theory. After briefly discussing basic aspects of the AdS/CFT
correspondence, we explain how the notion of the holographic RG comes out in
the AdS/CFT correspondence. We formulate the holographic RG based on the
Hamilton-Jacobi equations for bulk systems of gravity and scalar fields, as was
introduced by de Boer, Verlinde and Verlinde. We then show that the equations can
be solved with a derivative expansion by carefully extracting local counterterms from
the generating functional of the boundary field theory. The calculational methods
to obtain the Weyl anomaly and scaling dimensions are presented and applied to the
RG flow from the A/ =4 SYM to an N = 1 superconformal fixed point discovered
by Leigh and Strassler. We further discuss a relation between the holographic RG
and the noncritical string theory, and show that the structure of the holographic
RG should persist beyond the supergravity approximation as a consequence of the
renormalizability of the nonlinear ¢ model action of noncritical strings. As a check,
we investigate the holographic RG structure of higher-derivative gravity systems,
and show that such systems can also be analyzed based on the Hamilton-Jacobi
equations, and that the behaviour of bulk fields are determined solely by their
boundary values. We also point out that higher-derivative gravity systems give rise
to new multicritical points in the parameter space of the boundary field theories.
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1 Introduction

The idea that there should be a close relation between gauge theories and string theory
has a long history [1][2][3]. In a seminal work by 't Hooft [2], the relation is explained
in terms of the double-line representation of gluon propagators in SU(N) gauge theories.
There a Feynman diagram is interpreted as a string world-sheet by noting that each graph

has the dependence on the gauge coupling and the number of colors as
(g3a) " TENT = (N)TVENTTE = (g3) M TIN (1.1)

Here A = g2 N is the 't Hooft coupling, and V', E and I are the numbers of the vertices,
propagators and index loops of a Feynman diagram, respectively. We also used the Euler
relation V — F 4+ [ = 2 — 2g with g a genus. In the 't Hooft limit N — oo with A fixed, a
gauge theory can be regarded as a string theory with the string coupling g, o< 1/N o g2,
and A is identified with some geometrical data of the string background. To be more

precise, consider the partition function of a gauge theory

F = ()™ N Fpr =Y (63)* 2 F, (). (1.2)

g

A question is now if one can find a string theory that reproduces in perturbation each
coefficient F,(A). In [4], a quantitative check for this correspondence between Chern-
Simons theory on S® and topological A model on a resolved conifold was presented.
However, it is a highly involved problem to prove such a correspondence in more realistic

gauge theories.

The AdS/CFT correspondence is a manifestation of the idea by 't Hooft. By studying
the decoupling limit of coincident D3 and M2/M5 branes, Maldacena [5] argued that
superconformal field theories with the maximal amount of supersymmetry (SUSY) are
dual to string or M theory on AdS. Since the ground-breaking work by Maldacena, this
correspondence has been investigated extensively [6][7], and a number of evidences for
that have accumulated so far (for a review, see [8]). As a typical example, consider the
duality between the N/ = 4 super Yang-Mills (SYM) theory in four dimensions and the
Type IIB string theory on AdSs x S°. The IIB supergravity solution of N D3-branes



reads [9]

B A4
ds? = f; 7 (=dt® + da? + - - + da?) + f3;/(dy? + -+ dy) (fsE 1+ rf)a
(1.3)

where 7 = \/y? 4+ -+ 92, A\ = 47Ng,, and I, = Vo and g, are the string length
and the string coupling, respectively. The decoupling limit is defined by [, — 0 with

U = rl;* = fixed. The metric turns out to reduce to AdS; x S°:
172ds* = UNY 2 da'da? + NV2U2dU? + NV2d02, (1.4)

On the other hand, the low energy effective theory on the N coincident D3-branes is
the N' =4 SU(N) SYM theory. From the viewpoint of open/closed string duality, it is
plausible that both the theories are dual to one another. In fact, one finds that both have
the same symmetry SU(2,2[4). Furthermore, we will find later a more stringent check
of the duality by comparing the chiral primary operators of SYM and Kaluza-Klein(KK)

spectra of I1IB supergravity compactified on S°.

Recall that the IIB supergravity description is reliable only when the effect of both
quantum gravity and massive excitations of a closed string is negligible. The former

condition is equivalent to'

> lplank & N > 1, (1.5)
and the latter to

[>1l; & g N> 1, (1.6)

where [ = A4, is the radius of AdSs. This implies that the dual SYM is in the strong

coupling regime since A is the 't Hooft coupling.

One of the most significant aspects of the AdS/CFT correspondence is that it can
give us a framework to study the renormalization group (RG) structure of the dual field
theories [10]-[29]. In this scheme of the holographic RG, the extra radial coordinate in the
bulk is regarded as parametrizing the RG flow of the dual field theory, and the evolution
of bulk fields along the radial direction is considered as describing the RG flow of the

coupling constants in the boundary field theory.

'The Ipjank is the ten dimensional Plank scale, which is given by Ipjank = g;/‘lls.
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One of the main purpose of this article is to review various aspects of the holographic
RG using the Hamilton-Jacobi (HJ) formulation. A study of the holographic RG in the
HJ formulation was initiated by de Boer, Verlinde and Verlinde [30]. In this formulation,
we first perform the ADM Euclidean decomposition of the bulk metric with 7, the normal
direction to the AdS boundary, regarded as an Euclidean time. By working in the first-
order formalism, we obtain two constraints, the Hamiltonian and momentum constraints.
These ensure the invariance under the residual diffeomorphism after a choice of the time-
slice is made. Following the usual HJ procedure, one can derive from these constraints
functional equations that involve the classical action of gravity. These are called a flow
equation and play a central role in the study of the holographic RG. One of the reasons
of the usefulness of this HJ formulation is that it deals with the classical action without
solving the equations of motion. In fact, in the AdS/CFT correspondence, the classical
action gives us the generating functional of correlation functions of the dual field theory
6, 7]. In [30], a five-dimensional bulk gravity theory with scalar fields was considered,
and it was shown that the flow equation yields the Callan-Symanzik equation of the four-
dimensional boundary theory. They also calculated the Weyl anomaly in four dimensions
and found that the result agrees with those given in Ref. [31] (see also [32, 33]) For a
review of the Weyl anomaly, see Ref. [34] .

In a series of work of the present authors [35][36][37][38], we have investigated exten-
sively the HJ formulation in order to gain a deeper understanding of the holographic RG.
The expositions in this article are based on these works. Here let us summarize the results
briefly. We first discuss a bulk gravity theory in arbitrary dimensionality with various
of scalar fields [35]. In order to find a solution to the flow equation of this system, we
proposed to introduce weights. We showed that the weights allow us to solve the flow
equation systematically in terms of a derivative expansion. We see that the flow equation
solves the classical action uniquely up to local counterterms. From this result, we derive
the Callan-Symanzik equation of the d-dimensional dual field theory. We also compute
the Weyl anomaly and find a precise agreement with that given in the literature. It is
argued that the ambiguity of local counterterms does not affect the uniqueness of the

Weyl anomaly [36].

We next explore a bulk gravity theory with higher-derivative terms [37]. In the
AdS/CFT correspondence, these terms are supposed to be relevant to a 1/N (not 1/N?)



correction in the dual field theory. So the study of a higher-derivative gravity theory
is important in order to justify the AdS/CFEFT correspondence beyond the supergravity
approximation. We first present the HJ formulation of a higher-derivative gravity theory
to derive the flow equation of this system. We find that the systematic method proposed
in [35] is also useful to solve this equation. From the solution of the flow equation, we
compute a 1/N correction to the Weyl anomaly of N' = 2 USp(N) supersymmetric gauge
theory in four dimensions via an AdS dual proposed in [39] (for an earlier work on a
computation of 1/N corrections to Weyl anomalies, see [40, 41]). The result is found to
be consistent with a field theoretic computation. This implies that the AdS/CFT corre-
spondence is valid beyond the supergravity approximation. In a higher-derivative gravity
theory, new interesting phenomena of the holographic RG develop. These are studied in
detail in [36]. For other works on the HJ formulation in the context of the holographic
RG, see Ref. [42]-[50].

The expectation that the structure of the holographic RG should persist beyond the
supergravity approximation can be further confirmed by formulating the string theory in
terms of noncritical strings. In fact, as will be explained in §4, the Liouville field ¢ of the
noncritical string theory can be naturally identified with the RG flow parameter in the
holographic RG. Furthermore, various settings assumed in the holographic RG (like the
regularity of fields inside the bulk) can have direct counterparts in the noncritical string
theory. It will be further discussed in §4 that the behavior of bulk fields should be totally
determined by their boundary values in full orders of o’ expansion, as a consequence of

the renormalizability of the nonlinear ¢ model action of noncritical strings.

The organization of this paper is the following. In §2, we give a review of some aspects
of the AdS/CFT correspondence. We outline how the notion of the holographic RG comes
out in the AdS/CFT correspondence. As an example of a holographic description of RG
flows, we consider a flow from the N' =4 SYM to an N = 1 superconformal fixed point
discovered by Leigh and Strassler [51]. In §3, we formulate the Hamilton-Jacobi equation
of a bulk gravity theory and derive the flow equation. We solve it in terms of a derivative
expansion by introducing the weights. From this solution, we derive the Callan-Symanzik
equation and the Weyl anomaly. §4 is devoted to a discussion of the relation between
the holographic RG and non-critical strings, and it is discussed that the structure of the

holographic RG should persist beyond the supergravity approximation as a consequence



of the renormalizability of the nonlinear o model action of noncritical strings. In §5, we
consider the HJ formulation of a higher-derivative gravity theory. We first discuss a new
feature of the holographic RG that appears there. We next derive the flow equation of
the higher-derivative system and solve it by using the derivative expansion. We show that
this computation leads us to a consistent 1/N correction to the Weyl anomaly of N = 2
USp(N) supersymmetric gauge theory in four dimensions. In §6, we summarize the results
of this article and discuss some future directions in the AdS/CFT correspondence and
holographic RG. We also make a brief comment on the relation between field redefinitions
of the fields in a ten-dimensional supergravity and the AdS/CFT correspondence. As an
example, we show that the holographic Weyl anomaly is invariant under a redefinition of
the ten-dimensional metric of the Type IIB supergravity theory. In appendix, some useful

results are summarized.

2 Review of the AdS/CFT correspondence

In this section, we present a review of the AdS/CFT correspondence [5] and the holo-
graphic renormalization group (RG). We first discuss a prescription given by Gubser,
Klebanov and Polyakov [6] and Witten [7] to compute correlation functions of the dual
CFT. Based on these observations, we come to the idea of the holographic RG. Here the
IR/UV relation [10] in the AdS/CFT correspondence plays a central role. As an applica-
tion, we calculate the scaling dimension of a scaling operator of the CFT which is coupled
to a scalar field of the AdS space-time. We discuss in some detail a typical example of
the AdS/CFT correspondence, the duality between the four-dimensional N' = 4 SU(N)
SYM theory and Type IIB supergravity on AdSs x S®. In order to check the duality,
we show the one-to-one correspondence between the Kaluza-Klein spectra on S° and the

local operators in the short chiral primary multiplets of the N' =4 SU(N) SYM theory.

2.1 AdS/CFT correspondence and the Holographic renormal-

ization group

The AdS/CFT correspondence states that a classical (super)gravity theory on a (d + 1)-

dimensional anti-de Sitter space-time (AdSqy1) is equivalent to a conformal field theory



(CFTy) at the d-dimensional boundary of the AdS space-time [5][6][7]. To explain this, we

first introduce some basic ingredients.

The AdS4y1 of “radius” [ has the metric
ds® = g d X d XY
2
= dr® + e” 7y datda?, (2.1)

where X* = (2%,2) or X* = (2%, 7) with p = 1,---,d+1and i = 1,--- ,d. The two
parametrizations for the radial coordinate, z and 7, are related as z = le™!, and the
range of z (or 7) is 0 < z < oo (or —oo < T < 00), so that the boundary is located
at z = 0 (7 = —o0). For the AdS;;; with Lorentzian signature, we take 7;; to be the
flat Minkowski metric n;; = diag[—1,+1,...,+1]. In the following, we instead consider
the Euclidean version of AdS;i; (the Lobachevski space) by taking 7,; = d,;, which
generalizes the Poincaré metric of the upper half plane. The AdS;,; has the constant
negative curvature, R = —d(d + 1)/12, and has the nonvanishing cosmological constant:
A=—d(d—-1)/21>

The bosonic part of the action of (d 4+ 1)-dimensional supergravity with the metric
G (X) and scalars ¢*(X) has generically the following form:2

s S ¥ = 5 [EOXVE|VE) - R+ 577 L@ 0,503 (22)

2Kg 4 2654

Throughout this article, we extract the (d + 1)-dimensional Newton constant 167G}, =
2k3,, from the action in order to simplify many of expressions in the following discussions.

The scalar potential would be expanded as
~ 1 ~ o~
V(¢):2A+;§mi¢“¢“+“'- (2:3)

after the diagonalization of a mass-squared matrix. AdS gravity is obtained by substitut-

ing the AdS metric gaqg into the bulk action S with the cosmological constant A set to

2We use a convention that (d+ 1)-dimensional bulk fields wear a hat ~ whereas d-dimensional boundary
fields do not; e.g., EI;(X) = 5(9:, z) and ®(x). When bulk fields satisfy the equations of motion, we put
bar - on the bulk fields, e.g., ®(X) = ®(z, z). The bulk action is written in a bold face, S, while the

classical action (to be defined later) is simply written by S.



be
A=—d(d—-1)/20 (2.4)

We consider classical solutions ¢%(z, z) of the bulk scalar fields ¢°(z,z) in this AdSz
background. We impose boundary conditions on the scalar fields such that ¢%(z,z =
0) = ¢*(x) and also that they are regular inside the bulk (z — +00). The system is then
completely specified solely by the boundary values ¢*(z), and thus, if we plug the classical
solutions into the action (2.2), we obtain the classical action which is a functional of the

boundary values;

S[p*(x)] = S |Gz, z)zﬁﬁfs(x,z), aa(x,z)zaa(x,z)] ) (2.5)

A naive form of the statement of the AdS/CFT correspondence is® that the classical action
(2.5) is the generating functional of a conformal field theory living at the d-dimensional
boundary of the AdS space-time;

1

2 S[ﬁﬁa(f)]) = <eXp (/ dz ¢*(x) (’)a(x))> , (2.6)

CFT

exp <—

where Oq(x)’s are scaling operators of the CFT.

This statement is a simple consequence of the mathematical theorem that an isometry
of AdS44+1, f: AdSgi1 — AdSgy1, induces a d-dimensional conformal transformation at
the boundary. In fact, if the theorem holds, then by using the diffeomorphism invariance of
the bulk action (2.2), one can easily show that the classical action S[¢*(x)] is conformally

invariant:

Slp*¢*(x)] = S[¢*(2)], (2.7)

where p = f ’ H(AdS) is a conformal transformation on the boundary d(AdS). Thus, if we

AdS
formally define “connected n-point functions” by

(Outen)0uen) . = sy ey (5 S0

then they are actually invariant under the d-dimensional conformal transformations:

$7=0

(P Ou(@)- " On(22)) = (Ou 1) Ou(2a)) (2.9)

3This statement will be elaborated shortly later as is argued in Refs. [6][7]

CFT
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We here give a proof of a mathematical theorem in a more extended form than above:

Theorem 6]

Let Mgy be a (d+ 1)-dimensional manifold with boundary whose metric is asymptotically
AdS near the boundary.* Then any diffeomorphism which becomes an isometry near the
boundary induces a d-dimensional conformal transformation at the boundary.

proof

Let us consider an infinitesimal diffeomorphism, X# — X* 4 €#(x, z). Since this does not move

the position of the boundary off z = 0, €#(x, z) is expanded around z = 0 as
Cila,2) = €1(x) + O(2), €(w,2) = 2+ ((x) + O(P). (2.10)

If this diffeomorphism is further an isometry near the boundary, the change of the metric should

take the form

5@?]\1‘]'(%,2’) = 0(1)7 5??]\1‘2(5672) = O(Z)7 5??]\22(5672) = 0(1)7 (2'11)

around z = 0. A simple calculation shows that eq. (2.11) leads to the condition that the €*(z, 2)
and €#(x, z) have the following expansion around z = 0:

z2

€, ) = €(2) — =0 9,08 (@) + (1),

e (x,2) = 2 8i€i (z) + O(2%), (2.12)
and that the ¢*(z) satisfies the d-dimensional conformal Killing equation

0;&j(x) + 0;&i(w) = gﬁkfk(fc) nij. (&(x) =iy & (x)). (2.13)

This means that ¢(x) generates a d-dimensional conformal transformation at the boundary.

(Q.ED.)

However, if we naively evaluate the classical action (2.5), the integration generally
diverges. This is because of the infinite volume of the AdS space-time and the finite
cosmological constant in the Lagrangian density; S ~ [, o A e/GRA+ -] — 0.
Thus, we must make a proper regularization for the integration to make physical quantities

finite. Here we introduce an IR cutoff parameter zy to restrict the bulk to the region

4We say that a metric has an asymptotically AdS geometry when there exists a parametrization near

the boundary (z = 0) such that g;; = 272 n;; + O(1), giz = O(z) and g.. = 272 + O(1).



20 < z < 00,

! g b 1 - a 1 Tala
2 S[Qﬁ‘js(% z) ¢*(, 2)} = 5 / dz/ddx\/gAds {const. + = m2 ¢%¢
2Kd+1 2K}d+1 20 2
1 Pl " “a b
+ 5 Jads Lan(¢) 0,0° 0,9 | - (2.14)

We solve the equations of motion for aa(x,z) by imposing boundary conditions at the

new d-dimensional boundary, z = z:

oYz, z=2p) = ¢(x), (2.15)

The classical action is then obtained by substituting the classical solutions 5“(3:, z) into

the action (2.14), which is also a functional of ¢*(z):

S = S[¢"(x); 2] = S |Gz, z)zﬁﬁ;is(x,z), é\a(z,z)zaa(z,z)] ) (2.16)

However, at this new boundary z = 2y, the conformal invariance disappears since this
symmetry exists only at the original boundary, z = 0. In fact, we will show below that the
IR cutoff zy in the bulk gives a UV cutoff Ag = 1/z, of the boundary theory (the IR/UV
relation). Furthermore, in order to obtain a finite classical action around the original
conformal fixed point (29— 0), we need to tune the boundary values accordingly, ¢%(x) =
¢*(x; z9). This procedure corresponds to the fine tuning of bare couplings encountered in
usual quantum field theories. As we see in the next section with more general settings,
this fine tuning exactly corresponds to the (Euclidean) time evolution of the classical
solutions; ¢%(x;z) = ¢*(x,2). Thus, tracing the classical solutions as the position of
the boundary zy changes gives a renormalization group flow of the boundary field theory.

This is the basic idea of the holographic renormalization group [10]-[29].

We now explain why the cutoff parameter 2, can be regarded as a UV cutoff parameter,
from the view point of the boundary field theory [10]. We consider a scalar field with

large mass m on the AdS space-time
ds* = ye (d2? + myj da'da?) . (2.17)

In the AdS/CFT correspondence described above, the two-point function of the operator

O which is coupled to d: at the boundary z = z; is evaluated as

<O(x)(’)(y)> ~ exp(—mD(X,Y)), (2.18)

20
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where X = (z,2=2), Y = (y,z = 20), and D(X,Y) represents the geodesic distance
between X and Y in the (d + 1)-dimensional space-time. For the AdS metric (2.17), the

geodesic distance is given by

2
(lol+ VIeP +23)
2

D(X,Y)=1[-In : (2.19)
0
where |z|? = n;;z'2?. So the two-point function becomes
Z(Q)ml
(0@ow) ~ o
i (\flﬁ—yH !x—y\2+23>
1
~ g for |z —y| > 2. (2.20)

This means that the two-point function actually has a scaling behavior in the region
|z — y| > 2o. In other words, this implies that z, gives a short-distance scale around
which the scaling becomes broken, and thus Ag = 1/2y can be regarded as a UV cutoff of
the boundary field theory.

2.2 Calculation of scaling dimensions

Here we calculate the scaling dimension of an operator of the d-dimensional CF'T which

is coupled to a scalar field in the background of the AdS space-time [6][7].

We consider a single scalar field on the d-dimensional Euclidean AdS space-time of
radius [. To determine the scaling dimension of the dual operator, we calculate the two-

point function of the operator using the prescription described in the previous subsection.
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As the action of the scalar, we take

1

——S gASS( ),$($,2)
2’%34—1 [ w ]
d+1 1 ~uv ~o o~ om? ") oo,
A" X \/Gaas | = Gaas Ou0 00 + — @ ] + (¢—independent terms)
zndﬂ 2 2
jd-1 o [ dz [ 2 N2 Pm?
e [ [ (08) + (o) + 27
ldil d 2 2 1 l2m2 -~
T R

+0. (4 00.8) +0 (= 500) (221

where zg is the cutoff parameter to regularize the infinite volume of the AdS space-time.

Using the equation of motion for g/zﬁ\ given by

$=0, (2.22)

~ d—-1_ ~ ~
025105452 -
the classical action reads

szzd—l/ [—qsangr . (2.23)

2=z

where ¢ is the solution of (2.22).

To solve the equation of motion (2.22), we Fourier-expand the field ¢(z, z) as

d L _
oz, 2) = / (;T];d A €77 B (2) (fr(z=20) =1). (2.24)

It turns out that ¢,(2) is expressed by a modified Bessel function;®

_ L2 ;
Oi(2) = MK—”(M (u = /Pm? + d2/4> , (2.25)

20! K, (kzp)
where k = \/k? + - - - k2. By substituting (2.25) into (2.23), we obtain the classical action

s S =20, [ G A e ) F R, @20

® Another modified Bessel function I, (kz) is not suitable because we require the classical solution to

1

be regular in the limit z — oc.

12



wheref

Z=00

F(k) = [ébk() — 0.0 (2 )}

z2=z0

_ <—Z 0. 1n$k(z)) (2.27)
z2=z0
Writing the boundary value of the scalar as ¢(z,20) = [ (er A\ €% the Fourier
transform of the two-point function <(’) x)O(y > opr 18 given by”
<ok 0q> = / dlz ddy e=iko=iay <0(x) (’)(y)>
CFT CFT
4] ) ( 1
_ _ sm)
2
6/\_k 6A_q 2/€d+1 leading non-analytic part in k
2ld_1
—(2m)*=—5— 8%k + q) F(k) (2.28)
2654 . . .
leading non-analytic part in k
Using the identities
T
K, = I,—-1,), 2.29
2 sin TV ( ) ( )
z/2)?
Zk'Fk—l—V—l—l) (2:30)
and (2.25), the leading term of (2.27) in 2, is evaluated as
T(1—v) (kz\”
F(k) = 22«0—4% (%) + (analytic in k7). (2.31)
Thus the connected two-point function (2.28) is given by
OO> — N5k k2 9.32
(000,) =N 6"(k+q) [k (2:32)
where N is a numerical factor. This is equivalent to
A% dq e
— ikx+iqy
<O(x)(’)(y)>CFT / (2m)? (2m)d ¢ <Ok Oq>CFT
! 2
We thus find that the scaling dimension A of the operator O is given by
d 1
A:§+y:§<d+ d2+4m212>, (2.34)
or
A (A —d) =m?P2. (2.35)

SHere we have used ¢ (z = 2) = 1.
"The analytic terms in F give contact terms that have J-function-like support.
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2.3 Example

As discussed in the introduction, the duality between Type IIB supergravity on AdSs x S°
and the four-dimensional N' = 4 SU(N) SYM theory is one of the typical examples of
the AdS/CFT correspondence. As an example of evidence for this duality, we make a
review of the one-to-one correspondence between the chiral primary operators of the four-
dimensional N’ =4 SU(N) SYM theory and the Kaluza-Klein modes of IIB supergravity
compactified on S® [7][8][52][53][54].

The four-dimensional N' = 4 SU(N) SYM theory is constructed from an N' = 4
vector multiplet, that is, six real scalar fields ¢! (I = 1,---,6), four complex Weyl
spinor fields A\ya (A =1,---,4) and a vector field A;, each field of which belongs to the
adjoint representation of SU(N). This theory has 16 real supercharges ( 1.Q, A) and

)

the supersymmetry transformations for these fields are [55]
Q2.0 = (+1)"" Na,
{Qd ham} = =2 (0¥),,, 55y +2i (47) 7, [01.67].
{ gaxf} = 22'03@ (’YI)AB Di¢17

[Qa, Al :i(Ui)angAGQB, (2.36)
where
0 INAB
= ) (2.37)
F)ap 0

are the gamma matrices for the SO(6) and (v'/)%; = 1 (/77 — VJTI)AB. The operations

of Q44 are similar.
The spectra of the operators in this theory include all the gauge invariant quantities
that can be constructed from the fields described above. Here we concentrate our attention

on the local operators that can be written as a single-trace of products of the fields in the

N = 4 vector multiplet.®

The four-dimensional N' = 4 SU(N) SYM theory is a superconformal field theory

as a consequence of the large supersymmetry. The generators of the superconformal

8 Although we have also multi-trace operators which appear in operator product expansions of single-
trace operators, we do not consider them here since they can be ignored in the large N limit. For a

discussion of multi-trace operators in the AdS/CFT correspondence, see, Refs. [56][57][58].
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transformation consist of the supersymmetry generators {MZ PZ-,Qﬁ}, the dilatation

¥R
D, the special conformal transformation K; and its superpartner S%'. The algebra also
contains the bosonic conformal algebra {M;;, P;, K;, D} as subalgebras. We show some

part of the algebra which are necessary for our discussion;
D.Q=-3Q  [D.8]=+55
D, P)| = —iP; D, K] = +iK;,
(D, M;;] =0, {Q,8} ~M+D+R. (2.38)
For the complete (anti-)commutation relations of the generators, see Ref. [59].

We are interested in representations of the superconformal algebra whose conformal
dimensions are suppressed from below. Let us start with the bosonic conformal algebra
{M;
from below, there is a state | Q") that is characterized by the property,

i, Pi, K;, D}, From the assumption that the conformal dimensions are suppressed

K;|O') =0. (2.39)

We can generate a tower of states from the this state by acting on it with the generator
P;, which is called the primary multiplet. The state | O") is called the primary state and
the other states in the multiplet are called the descendants. Recalling the fact that the
generator P; raises the conformal weight by 1 (See (2.38)), the primary state is the lowest
weight state in the multiplet.

There is also the same structure in an irreducible representation of the superconformal

algebra, that is, there is a state that is characterized by the property,
S|0) =0, K|O) =0, (2.40)

and a tower of states is constructed from this state by acting with the generators (Q, Q)
and P;, which raise the conformal weight by 1/2 and 1, respectively. We call the state
| O) the superconformal-primary state and other states in the multiplet the descendants.
We note that the multiplet is divided into several primary multiplets of the bosonic
conformal algebra whose primary states are obtained by acting with the supercharges to

the superconformal-primary state.

Here we are especially interested in the chiral primary operators.® The four-dimensional

9We do not distinguish states and local operators because, in a conformal field theory, there is one-

to-one correspondence between them [8].
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N = 4 superconformal algebra contains 16 supercharges. The chiral primary operators
are defined as the superconformal-primary operators that are further eliminated by the
action of some combinations of supercharges. In particular, a multiplet with the primary
state that is eliminated by half of sixteen supercharges is called a short chiral multiplet.
For detailed discussions of the representation theory of extended superconformal algebras,
see, for example, Refs. [60]-[65]. One can see that the conformal dimensions of chiral pri-
mary operators are determined only by the superconformal algebra, (see (2.38)), being
independent of the coupling constant. This means that the chiral primary operators are
appropriate in comparing their properties with those in the classical supergravity theory,
since the classical supergravity theory is reliable only in the region where the 't Hooft
coupling is large, for which perturbative calculation is not applicable. By definition, the
lowest component of the short chiral primary multiplet is characterized by the fact that it
cannot be obtained by acting on any other operator with the supercharge. Looking at the
supersymmetric transformation of the ' = 4 vector multiplet (2.36), it is suggested that
the super-conformal primary operators of the short chiral primary representations are
described by the trace of a symmetric product of only the scalar fields.!® More precisely,

the lowest component of the chiral primary representations is [66][67]
O, =tr (¢(Il . -¢I")) — (traces), n=2---,N. (2.41)

For example, Oy = tr (gb[gb‘]) — %5Utr (22:1 gngbK) The maximum value of n is N
because the trace of a symmetric product of more than N commuting matrices can always

be written as a sum of products of O,, (n < N).

In the following, we examine the contents of the short chiral primary multiplet built
from the O,,. We note that any state in the multiplet is in a representation of both of the
superconformal algebra and the R-symmetry SU(4). Recalling that D and M;; commute
each other, it is convenient to label the state by the conformal weight, A, the left and

right spins, (j1,j2), and the Dynkin index of the SU(4), (p, q,r). We also use the helicity

10We note that the fields in the N' = 4 vector multiplet is eliminated by half of the 16 supercharges
by definition. We must symmetrize the product because the right hand side of (2.36) contains the

commutators of ¢’’s.
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as a label of states. For example, O,, and supercharges are labeled as

A|SU2), x SU2)g | SU(4) | helicity
O, 0,0 0,n,0 0

W00 000 o)
Qa |3 (3:0) (0,0,1) | +3
@o}A % (07%) (17070) _%

The operators in the multiplet are obtained by acting on the O,, with Q and @, and their
labels are determined by those of the fields in the N = 4 vector multiplet,

SU(2)p, x SU(2)g | SU(4) | helicity
! (0,0) (0,1,0)| 0
Aaa (3,0) (1,0,0) | +3 (2.43)
X (0, 1) (0,0,1)| —1
A; (3:3) (0,0,0) | *1

and the supersymmetry transformation (2.36).

As an example, we explicitly construct the operators with conformal weight n + 1/2

and n + 1 by operating the supercharges to the lowest operator O,, [8].

1) A=n+1/2

The states with the conformal dimension n + 1/2 are obtained by operating the
supercharges once to the lowest state |0,), that is, Q,|0,) and Q4|0,). Their

explicit expressions are!!
AD = tr (Agag® - ¢™)  and ADT =1t (Xﬁ& . .¢fn) . (2.44)

They are spinor fields and their complex conjugate, whose SU(4) Dynkin index and

labels of the superconformal algebra are summarized in the table,

| SU2)L x SU2) | SU(4) | helicity
complex A [ (1,0)+(0,3) | (Lin—1,00+(0,n—1,1)| =+

2> 2

(2.45)

2) A=n+1

These states with the conformal weight n + 1 are obtained by operating two super-

charges. When we operate the supercharges with the same chirality, the irreducible

1n this subsection, we assume that fields in a trace are always symmetrized.
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representations are obtained by either symmetrizing or antisymmetrizing the super-
charges. In the first case, we obtain Q@3 |O,) and its complex conjugate, which

are self-dual and anti-self-dual two form fields, respectively;
Bz‘(;) = (o) tr <(0kl)ag Fug" - ‘¢I") -
B = @)t (7) 4 P’ -6 ) -+ (2.46)

In the second case, we obtain €*°Q,Q5|0,) and its complex conjugate, which are

scalar fields and their complex conjugate, respectively;
80(1) = Bt ()\aA)\ﬁB¢IB .. ¢In) 4+

oOF — by <X§X§¢’3 . .¢In> T (2.47)

On the other hand, when we operate the supercharges with different chiralities, the

obtained states, Q,Q4|O,), are real vector fields;

AZ(-l) — (ai)ao} tr ()\QA)\5¢13 L. ¢In) R (2.48)

Their SU(4) Dynkin index and the labels of the superconformal algebra are sum-

marized as

SU(2)r SU(4) helicity
1) (0,n—1,0)4+(0,n—1,0) | =£1
(2,0 —2,0)+ (0,n—2,2) | 1
(1,n —2,1) 0

X
complex BZ(; ) (1,0) +

(2.49)
complex (%)

real Agl)

Repeating the same operation, all the states in the multiplet can be constructed.
We summarize the result in the Table 1, where we write only the primary states of the
bosonic conformal algebra in the multiplet. For example, we do not write such states that
is obtained by acting with more than eight supercharges because such states must vanish
or become descendants of the primary multiplets of the bosonic conformal algebra. We
note that, for n = 2 and 3, the states with the negative Dynkin indices are absent in the

Table 1.
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Table 1: The primary states in the short chiral primary multiplet built on the lowest
state (2.41). The operator O, corresponds to the scalar operator ¢, We denote the
representations of the Lorentz group by the symbols ¢, Ao, A, Bij, ¥ia, and h;; , which

correspond to states with the left and right spins (0,0), (3,0)+(0,3), (5,3), (1,0)4(0,1),

(1, %) + (%, 1) and (1, 1), respectively. The (p, g, ) is the Dynkin index of the R-symmetry

group SU(4).

A SO(1,3) SU(4) helicity
n real () (0,n,0) 0
n+ 1| complex AV (1,n=1,00+(0,n—1,1) +1

complex ¢ (2,mn—2,0) 4 (0,n —2,2) +1

n+1| complex By | (0,n—1,0)+(0,n—1,0) | =1
real AZ- (1 n—2,1) 0

complex A | (1,n—2,0)+ (0,n—2,1) +3

n+3| complex AY (2,n—3 0)+ (0,n—3,2) +3
complex @Df;) (0,mn—2,1)4+(1,n—2,0) +3
complex ¢ | (0,n—2,0)+ (0,n —2,0) +2
complex A? | (1,n—3,1)+(1,n—3,1) | =1

n+2 real o) (2 n—4,2 0
complex BZ-(? (0,n—3,2)+ (2,n —3,0) 0

real h;; (O n—20 0

complex A (0,mn—3,1)+ (1,n — 3,0) :I:%

n+35| complex \Y | (1,n—4,2)+ (2,n—4,1) | +1
complex wi(i) (1,n—3,0)+ (0,n—3,1) +3
complex ©® | (0,n —4,2) + (2,n — 4,0) +1

n+3 | complex BZ-(?) (0,n—3,0) 4+ (0,n — 3,0) +1
real AE?’) (IL,n—4,1 0

n+%| complex ALY (0,n —4,1)+ (1,n —4,0) +3
n+4 real ¢ (0,mn—4,0 0
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On the other hand, the bosonic sector of the ten-dimensional Type IIB supergravity
theory consists of a graviton, a complex scalar, a complex two-form field and a real four-
form field whose five-form field strength is self-dual, and the fermionic sector consists of a
chiral complex gravitino and a chiral complex spinor of opposite chirality [68]. The Kaluza-
Klein spectra on S® are obtained by expanding the fields by the spherical harmonics of
S5. Here we demonstrate the simplest example of the calculation, that is, the harmonic
expansion of the complex scalar field. The equation of motion of the scalar field B in a

ten-dimensional space-time Mg is given by
=G <\/ GGMV B) —0, (2.50)

where G sy is the metric of the M;y. We assume that the manifold My has a structure
M;s(z) x S°(x), where z* and y® are the coordinates of M; and S° respectively. We
express the metric of the Mz and S® as g, and hg, respectively. Then the equation of

motion (2.50) is divided into the Mjs-part and the S5-part;

1/ 5@0, (VG (@)9,B(x.v)) + 110, (VA" )aB(z.4)) = 0.

(2.51)

Here we have denoted the radius of the S° as [, and 9, = 9/92* and 9, = 9/9y". Next

we decompose the scalar field B(x,y) by the scalar harmonics of S°

=Y on(@)Yaly), (2.52)

where the scalar harmonics Y% (y) is the eigenfunction of the Laplacian of S°

1Vh(Y)0a («/ Yhat ()9 Vi (y ):—k(k+4)yk(y) (k=0,1,2,---).  (2.53)

Substituting (2.52) into the equation of motion (2.51), we obtain the equation for the k-th
mode @ (x)

1v/—3(2) W T3 ()0, oz )) — k(k + 4 2p(z) = 0. (2.54)

This is the equation of motion of a scalar field in the background of Mj5 with the mass

squared
m; =k(k+4)12 (k=0,1,2,---). (2.55)
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In the context of the AdS/CFT correspondence, the Mj is given by AdSs of radius [. Thus,
using the formula (2.34), the conformal weights of the corresponding scaling operators

reads

Ak:%<L+J¥+4Mk+®)

=k +4, (2.56)

which exactly corresponds to the scalar operator ¢® in the Table 1. In fact, the degen-
eracy of the harmonic function Y,,_»(y) is 112n%(n? — 1), which is equal to the dimension

of the representation of SU(4) with the Dynkin index (0,n — 2,0).

The complete Kaluza-Klein spectra of the Type IIB supergravity compactified on S°
are summarized in the TABLE III in Ref. [68]. To compare the masses of the Kaluza-
Klein scalar modes of IIB supergravity compactified on S® with the conformal weights of
the scalar operators in the short chiral multiplets of the N' =4 SU(N) SYM theory, we

show the conformal weights of all the scalar states in the short chiral multiplets;

SU(4) conformal weight
real @M (0,n,0) (n>2), A=23--- N,
complex ©® | (2,n—2,0)+ (0,n—2,2) (n>2), A=34,--- N+1,
complex ©® | (0,n—2,0)+ (0,n—2,0) (n>2), A=45--- N+2, (2.57)
real ¥ (2,n —4,2) (n>4), A=6,7,---,N+2,
complex ©©® | (2,n—4,0)+ (0,n—4,2) (n>4), A=7,8,--- ,N+3,
real  ¢© (0,n —4,0) (n>4), A=8,9,--- N+4.

If we apply the formula (2.35) to the conformal dimensions of the scalar operators in (2.57),
one can show that the mass spectra of the Kaluza-Klein scalar modes in the TABLE II1I
in Ref. [68] are reproduced.

In Ref. [69], the Kaluza-Klein spectra for S® compactification are classified by unitary
irreducible representations of the superalgebra SU(2,2|4) which is the maximal super-
symmetric extension of the isometry group of the geometry AdSs x S°, SU(2,2) x SU(4).
The result is in the Table 1 in that literature. One can find the one-to-one correspon-
dence between the Kaluza-Klein spectra in the Table 1 in Ref. [69] and the short chiral
multiplets in the Table 1 in this article.

The fascinating coincidence of the short chiral primary multiplets of N' = 4 SU(N)
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SYM with the Kaluza-Klein spectra IIB supergravity compactified on S® is a strong
evidence of the AdS/CFT correspondence.

2.4 Holographic RG

In this subsection, we will make a review of a holographic description of RG flows via
supergravity. As was mentioned in §2.1 and will be discussed elaborately in the next
section, the basic idea is that the evolution of bulk fields along the radial direction can
be identified with RG flows of the dual field theories. When our interest is in an RG
flow that connects a UV and IR fixed point, the dual supergravity description is given
by a background that interpolates between two different asymptotic AdS regions along
the radial direction. As an example, we focus on the holographic RG flow from N =
4 SU(N) SYM, to the N' =1 Leigh-Strassler(LS) fixed point [51], which was investigated
in [16]. The contents covered in this subsection will be re-investigated in §3.6 after we

develop tools to investigate the holographic RG based on the Hamilton-Jacobi equations.

Let us first start by recalling the field theory stuff. The matter content of N'= 4 SYM

in N = 1 superspace formulation reads

We 1,
D, 32/3

The LS fixed point can be realized by adding the mass perturbation to N' =4 SYM
m 2
W+ AW = trq)l[@g,@g] + Etrq)g, (258)

and choosing the anomalous dimensions of ®; as

1

M=Y=—7 V3=

1 (2.59)

1
5
One can then see that the theory flows to an N = 1 IR fixed point with SU(2) x U(1)%,
global symmetry, because the exact beta function [70] turns out to vanish:

N 3—37 (1-2y)

Plo) = - 812 1 — g>N/8n?

(2.60)
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Note that U(1)% is different from U(1)g. We study the UV and IR fixed points by
computing the Weyl anomalies. It is argued in [71] that N' = 1 superconformal invariance

relates the Weyl anomaly with the U(1)g anomaly as

i _ ¢ ijkl a mijkl € ij
(T g0 = o2 WiaktW"™ = 1o Rigu 27" + =5 Vi VY, (2.61)
i a—=c¢ i 5(1 — ?)C i
(0i(VgJ")) g0 = — g2 Hiandt TR 4 o2 ViV (2.62)

Here g;; is a background metric and v; a background gauge field coupled to the R-current
Jt. Vi; is the field strength of v;, Wjj;u is the Weyl tensor and ﬁijkl is the dual of the
Riemann tensor. The Adler-Bardeen theorem guarantees that a and ¢ do not receive
quantum corrections. So the coefficients of the Weyl anomaly can be computed exactly
in terms of perturbation. It is then straightforward to compute a — ¢ and 5a — 3¢ in the

UV and IR fixed points:

a c 27
SR _OR 2T oy = (2.63)
ayv Cuv 32

We will now show that the dual supergravity analysis reproduces this relation. We
first recall the computation of Weyl anomalies by supergravity [31]. It is found that the
Weyl anomaly of the dual CFT, takes the form

a=co 9t (2.64)

where [ is the radius of the AdS;;. The UV fixed point is dual to AdSs x S° so that
we get lyy = (4mg,N)"*. On the other hand, the background dual to the IR fixed point
should be such that it has eight supercharges as well as an SU(2) x U(1) gauge group.
In fact, it is shown in [72] that A/ = 8 gauged supergravity in five dimensions allows this
solution. Using this result, one can obtain the radius of the new AdS background, which

turns out to yield the relation (2.63).

In order to keep track of the whole RG trajectory using supergravity, we have to
find a IIB background that interpolates along the radial direction between AdSs x S°
corresponding to the UV fixed point and AdS; x K5 with K5 being a compact manifold
that admits the necessary symmetries mentioned above. Such a solution was constructed
in [73] up to some unknown functions. Because of the background being complicated, it

is difficult to get information of the dual gauge theories from it. One of the promising
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methods toward a global understanding of holographic RG flows is to take a Penrose
limit. A Penrose limit of a background is taken by considering a null geodesic on it and
then defining an appropriate coordinate transformation that reduces to the null geodesic
equations in some limit. So the Penrose limit amounts to probing the local geometry
near the null geodesic, and the original background often gets much simplified. In fact,
it is pointed out in [74] that a Penrose limit of AdS5 x S® yields the pp-wave background
[75] that is maximally supersymmetric and the string theory on which is solvable in the
light-cone gauge [76]. The Penrose limit of the Pilch-Warner solution [73] was studied
in [77]. For another application of the Penrose limit to the study of the holographic RG
flows, see e.g. [78].

Another intriguing aspect of the holographic RG is that supergravity allows one to
define a “c-function” that obeys an analog of Zamolodchikov’s c-theorem [79]. To see this,

consider a five-dimensional geometry with the metric

1 i
ds® = dr* + () ni; da'dx’ . (2.65)

When a(7) = /!, this denotes AdSy;; of radius [. Following [16], we define

N p
e(1) (IA((T)> , K(r)= —da log a(T). (2.66)

For AdSgy1, one finds that ¢(7) oc 1971 = const, in agreement with the result [31]. In
order to show that ¢(7) is a monotonically decreasing function of 7, we employ the null

energy condition:

JU d—1dK 5
R, "¢ = e > 0 for any null vector &£". (2.67)

Note that the inequality saturates for AdS that corresponds to a fixed point of the dual
theory. It is not easy to verify a higher-dimensional analog of the Zamolodchikov theorem
in the purely field theory context (for a review, see [80]). The dual supergravity description

provides us with a powerful framework for that.

3 Holographic RG and Hamilton-Jacobi formulation

In this section, we discuss the formulation of the holographic RG based on the Hamilton-

Jacobi equation [30, 35].
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3.1 Hamilton-Jacobi constraint and the flow equation

We start by recalling the Euclidean ADM decomposition that parametrizes a (d + 1)-

dimensional metric as

ds® = G, dX'dX"”
= N(z,7)%dr* + Gij(x,7) <dxi + N(z, T)dT) (dxj + Nz, T)dT). (3.1)
Here X* = (z',7) with i = 1,--- ,d, and N and X are the lapse and the shift function,
respectively. The signature of the metric g, is taken to be (+---+4). As we discussed
in the previous sections, the Euclidean time 7 is identified with the RG parameter of the
d-dimensional boundary field theory, and the evolution of bulk fields in 7 is identified with

the RG flow of the coupling constants of the boundary theory. In the following discussion,

we exclusively consider scalar fields as such bulk fields.

The Einstein-Hilbert action with bulk scalars 5“(3:, 7) on a (d+1)-dimensional manifold

Mgy, with boundary ;3 = 0Myy1 at 7 = 79 is given by

S[/Q\W(xv 7), ga(x, T)}
— / X \/G <V($) — R+ 12 Loy(8) 3" 9,0° aﬁ?) - 2/ dz /G K
Mg g
(3.2)

which is expressed in the ADM parametrization as

S[gij(z, 1), ¢ (z, 7), N( ) )\’(3: 7))
/dd / dr /3 V(¢) ~ R+ RKyK7 - f(2>
+ 12N Loy (9) <(gz5“ = X06") (¢ = N0id) + N* 57 016 0, |
= / d'x / AT /G La1[3, 6, N, N, (3.3)
where - = 0/07. Here R and V; are the scalar curvature and the covariant derivative with

respect to g,;, respectively. K;; is the extrinsic curvature of each time-slice parametrized

by 7,

R, = 12N (@j — V- ﬁjﬁi) , (3.4)



and K is its trace, K = §¥ K;;. The boundary term in Eq. (3.2) needs to be introduced to
ensure that the Dirichlet boundary conditions can be imposed on the system consistently
[81]. In fact, the second derivative of g;; in 7 appears in the first term of Eq. (3.2), but

can be written as a total derivative and canceled with the boundary term.

As far as classical solutions are concerned, the action (3.3) is equivalent to the following

one in the first-order form:

S[Gij, 8,7 Ray NN z/ddazdrﬁ[%"@ijjt%a@“jtﬁﬁjﬁﬁ ,

(3.5)
with
ﬁ = H(/g\ija aaa %\ija /7%(1)
= 1d—1(7)" =72 — 12L%(@) FuTp + V() — R+ 12 Loy () 57 0,0° 0,
ﬁi = P’L (/gz]a $a7 /ﬂ\-”a %a)
= 2V;77 —7,Vi¢" (3.6)
In fact, the equations of motion for 7% and 7, give the relations
BB R, Fa=1NLa) (30— 308, 57)

and by substituting this expression into Eq. (3.5), (3.3) is obtained. Here N and i
simply behave as Lagrange multipliers, and thus we have the Hamiltonian and momentum

constraints:

.

1V/§686N = H = 0, (3.8)
1,/56860 = P = 0.

Note that these constraints generate reparametrizations of the form 7 — 7+ d7(z), 2° —
2’ + §z'(z) for each time-slice (T = const). One can easily show that they are of the first
class under the canonical Poisson brackets for g;;(z), 7% (x), ¢*(x) and 7,(x). Thus, up to
gauge equivalent configurations generated by H(z) and P*(x), the T-evolution of the bulk
fields is uniquely determined, being independent of the values of the Lagrange multipliers
N and X, at the initial time-slice. In the following discussion, we work in the “temporal

gauge,” N =1, \' =0.
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Let g;;(z,7) and ¢*(x, 7) be the classical solutions of the bulk action with the boundary

conditions'?

Gij(r, 7=10) = gij (), oY (x, T=10) = ¢*(x). (3.10)

We also define 7 (x, 7) and 7,(x, 7) to be the classical solutions of 7 (z, 7) and T, (x, 7),
respectively. We then substitute these classical solutions into the bulk action to obtain

the classical action which is a functional of the boundary values, g;;(z) and ¢*(z):

S[gij(x),gb(x);n)} = S [@-j(x,T), ¢*(z,7), T (x,7), Tulz,7), N(z,7), Xi(l‘,T)]

:/dd:r/ dr /g [f@‘ﬂ@j + 78| (3.11)

Here we have used the Hamiltonian and momentum constraints, H = P; = 0. One can

see that the variation of the action (3.3) is given by
S[ote).owin] = — [deyg [(f%, 70) Gy (2, 70) + a2, 70) 6 (2, 70) ) 970
+ 7 (z, 10) 6G:;(x,70) + Tal, T0) 6@5“(x,7’0)]

= — /ddx\/ﬁ [7’7(% 70) 0Gi;(2) + Ta(z, T0) 5gz5“(x)} , (3.12)

since 07;;(x, 70) = 0gs;(x) — G;;(x,70) 079, ete. It thus follows that the classical conjugate

momenta evaluated at 7 = 7y are given by
7 (z) =7 (x, 1) = —1,/g 650g:; (), o (%) = Ta(z,10) = —14/9056¢" (x). (3.13)
Since 07y disappears on the right-hand side of (3.12), we find that
90708 [gi5 (), ¢°(x); 0] = 0, (3.14)

that is, the classical action S is independent of the coordinate value of the boundary, 7.

Thus, the classical action S = S [g(x), qb(x)] is specified only by the constraint equations

H(gij(.r)7§ba(l‘),Wij(l‘),ﬂ'a(l‘)) = 0’ 'Pi(gij(x),qﬁa(x),ﬂ'ij(x),ﬂ'a(l‘)) = O’ (315)

120ne generally needs two boundary conditions for each field, since the equations of motion are second-

order differential equations in 7. Here, one of the two is assumed to be already fixed by demanding the

regular behavior of the classical solutions inside Mg41 (7 — +00) [5, 6, 7] (see also Ref. [82]).
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with 7% (x) and m,(z) given by (3.13). From the first equation (the Hamiltonian con-

straint), we obtain the flow equation of de Boer, Verlinde and Verlinde [30],
{8, 5} (x) = La(x), (3.16)
with
{S,8}(x) = (1y/9) | — 1d — 1(gi;056gi;)* + (3S6gi;)* + 12L°(¢) 5S¢ 5S5¢° ] ,(3.17)
and
Li(x) = V() = R+ 12 La(9) g79:0"9;¢". (3.18)

The second equation (the momentum constraint) ensures the invariance of S under a

d-dimensional diffeomorphism along the fixed time-slice 7 = 7y:

5S 5S 5S : 5S
d e a - d . ) 49— | = 1
/d x ((Lg” 500 + 0.0 5¢a) /d x {(VZGJ + V&) 50 + € 0;¢ 557 0, (3.19)

with €'(x) an arbitrary function.

3.2 Solution to the flow equation

In this subsection, we discuss a systematic prescription for solving the flow equation (3.16).

When the boundary 7 = 7 is shifted from the original boundary 7o =—o00 (or z=0)
of AdS space, the conformal symmetry disappears at the new boundary, and thus the
boundary field theory should be regarded as a cut-off theory. The limit 79 — —o0o yields
an IR divergence because of the infinte volume of the bulk geometry, and thus we need to
subtract this divergence from the classical action. However, as was already discussed in
§2.1, this divergence can also be regarded as coming from the short distance singularity for
the boundary field theory (IR/UV relation). Since we are also taking into account the back
reaction of matter fields to gravity, the required counter-term should be a local functional
of d-dimensional fields, ¢;;(x) and ¢*(z). This consideration leads us to decompose the

classical action into the following form:

oS [9(e), 6(0)] = 5 o—Suclo(a). 6(w)] ~ Do) 6(x)].  (3:20)
d+l d+l
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Here S [g(x), ¢(3:)] is the local counter-term, and F[g(x), ¢(x)] is now regarded as the
generating functional with respect to the source fields ¢%(z) that live in a curved back-

ground with metric g;;(x).
We make a deriative expansion of the local counter-term in the following way:
Stoclg(@), ¢(x)] = /ddﬂ? V9(@) Lioe(x) = /ddw Vo) DY [Lee(@)],.  (3:21)
w=0,2,4,---

The order of derivatives is counted with respect to the weight w [35] that is defined

additively from the following rule!?:

weight
9i(x), ¢"(x), I'ly, 9] 0
0; 1
R, Rij, 0;¢°0;¢°, - - - 2
0I'/6g;i(z), 0L /5 () d

The separation of a local counter term Sj,. from the generating functional I' is usually
ambiguous for higher weight, and we here assign the vanishing weight to I' since this
greatly simplifies the analysis of I" [35]. The last line of the table is a natural consequence
of this assignment, since 6I' = [ d?z(6¢(x) x 6T /d¢(x)+- - - ) and dz gives the weight w =
—d. Then, substituting the above equation into the flow equation (3.16) and comparing
terms of the same weight, we obtain a sequence of equations that relate the bulk action

(3.3) to the classical action (3.20). They take the following form [35]:

Lo = {8 Soc}] + [{Socs Sioc}] . (3.22)
0 = [{Sloc, Sloc}] (w=4,6,--,d—2), (3.23)

0 = 2[{Se T}, = [ (e 53] (324
0 = 2[{S0eT}] - 21 [{sk,c, Suc}|  (w=di2o20-2), (325)
0 = [{r r}} 2 [{Sloc, r}] (QT[{SIOC, Sloc}] L (3:20)

0 = 2[{Ske, r}}w—% [{sk,c, Sic}| (w=2d+2,-). (3.27)

13A scaling argument of this kind is often used in supersymmetric theories to restrict the form of low

energy effective actions (see e.g. Ref. [83]).
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Equations (3.22) and (3.23) determine [Ljc], (w = 0,2,---,d — 2), which together
with Eq. (3.24) in turn determine the non-local functional I'. Although [Li,], enters the

expression, we will see later that this does not give any physically relevant effect.

By parametrizing [Lioc]o and [Lioc]o as

[Eloc]o = W(¢), (328)
[Liocl, = —®(¢) R+ 12 My () g7 0,6 9;¢°, (3.29)

one can easily solve (3.22) to obtain [35]'

V() = —dd(d—1)W()? +12L™() 9.W (¢) W () . (3.30)

—1 = d—22(d— 1) W(g) ®(e) — L(¢) W (6) () (3.31)
12La(¢) = —d— 24(d — 1) W(§) Map(¢) — L(6) W ($) TED(@),  (3.32)
0 = W(o)VZ®(¢) + L) 0.W (¢) Mye(0) VZ¢° . (3.33)

Here 0, = 0/0¢“, and T’ 224)6(¢) = M“(p)T g\gg (¢) is the Christoffel symbol constructed
from Mgy (¢). For pure gravity (Lo, = 0, My = 0), for example, setting V' = 2A =
—d(d —1)/I%, we find"®

2(d—1) l
W=-——7-—+ &=— 3.34

Here A is the bulk cosmological constant, and when the metric is asymptotically AdS, the

parameter [ is identified with the radius of the asymptotic AdSgy 1.
When d > 4, we need to solve Eq. (3.23). For the pure gravity case, for example, by
parametrizing the local term of weight 4 as
[Liocls = XR? + YR;;RY + ZR;j R, (3.35)

Eq. (3.23) with w = 4 is expressed as

[{Slom Sloc}i|4
= —W2(d—1)((d—4)X —dP’A(d—1)(d — 2)*) R?
—W2(d—1) ((d—4)Y +1*(d—2)*) RyR7 —d—42(d — 1) WZ R;ju R7™

0

+ (2X +d2(d —1)Y +2d — 1Z) V*R, (3.36)
Y The expression for d = 4 can be found in Ref. [30].
15The sign of W is chosen to be in the branch where the limit ¢ — 0 can be taken smoothly with
Lop(9) and M,y (¢) positive definite.

30



from which we find
X =dP4(d—1)(d—2)*(d—4), Y=-Pd-2)*d—4), Z=0, (3.37)

and [{Sloc, Sloc}] can be calculated easily to be
6

[{Slom Sloc}}ﬁ
d+ 2

=0 l <—4X - m}/) RRij RV +d+22(d — 1)XR* — 4YR*RI'R;j

g g d—2

+ (contributions from [Lioc)s)
_ {_ 3d + 2

2(d — 1)(d — 2)3(d — 4)

+ 4(d —2)*(d — 4) R* R Ryjpy — 1(d — 1)(d — 2)*(d — 4) RY V,V;R

+2(d—=2)*(d—4) R V’R;; — 1(d — 1)(d — 2)*(d — 4) RV’R]

RR;; R7 +d(d+2)8(d — 1)*(d — 2)3(d — 4) R

+ (contributions from [Loe]s)- (3.38)

On the other hand, from the flow equation of weight d, (3.24), we find

L osroge = -1

2
- 0..0'0a.. — 3%
91]5 591] ﬂ (¢)\/§ 2/<,3+1

V9

2(d — 1)W () [{Sloc, Sloc}] g (3.39)
with
3(¢) = 2(d — 1)W(¢) L™ () W (¢). (3.40)

It is crucial that 5 can be identified with the RG beta function. To see this, we recall
that an RG flow in the boundary field theory is described by a classical solution in the
bulk. Here we consider the classical solutions g,;(z,7) and ¢*(z,7) with the boundary

conditions

Gij(x,70) = gij(x) = 1a" 6y, ¢"(w,70) = ¢"(2) = ¢". (a,¢: const.) (3.41)
This represents the most generic background that preserves the d-dimensional Poincaré
(or Euclidean) symmetry. Since we set the fields to constant values, the system is now
perturbed finitely. Furthermore, since a gives the unit length of the d-dimensional space,

this perturbation should describe the system with the cutoff length a, which corresponds
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to the time 7 = 7y in the RG flow. From Eq. (3.7) and the Hamilton-Jacobi equation
(3.13), we obtain

ddrg,;(x,T) = 1d—1W(¢) 1a® 6y, (3.42)

T=T0

ddr ¢*(x,7) = —L%) oW (). (3.43)

T=T0

We then assume that the classical solutions take the following form for general 7:

giy(@,7) =1a(r)*0;,  ¢"(x,7) = ¢"(a(7)), (3.44)

with a(7p) = a. Note that a(7) can be identified with the cutoff length at 7. It then
follows from (3.42) and (3.43) that

adrda = —=2(d—1)W(¢), (3.45)
addag™(a) = 2(d—1)W(6) L™(6) W (0). (3.46)

Comparing the latter with Eq. (3.40), we thus conclude that the 5%(¢)’s in (3.39) are
actually the beta functions of the holographic RG;!

5(0) = 056 (a). (3.47)

Eq. (3.39) is one of the key ingredients in the study of the holographic RG. In fact, we
will show that this yields the Weyl anomalies and the Callan-Symanzik equation in the
dual field theory.

3.3 Holographic Weyl anomaly

We first notice that (2/,/g) 6I'/dg;;(x) gives the vacuum expectation value of the energy

momentum tensor in the background g;;(z) and ¢%(z);

NG dgij(x) N <T ( )>g,d>‘ (3.48)

Thus, if we choose the couplings ¢* such that their beta functions vanish, Eq. (3.39) shows
that its right-hand side gives the Weyl anomaly:

Wala) = (T3@))] == o 2d = W(6) [{Sier S,

B(9)=0 2R3,

(3.49)

B(#)=0
6Note that a increases under our RG flow which moves to IR. So our definition of 3% has the opposite

sign to the usual one.
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Before turning to a computation of the holographic Weyl anomaly, we here would like
to clarify the relation between the uniqueness of Weyl anomalies and an ambiguity of the

solution of the flow equation, that was argued in [36].

Generically, the Weyl anomaly has the form

Wi = — 52 = )W) ([{Seer Set] 2 (St Seo}) | (350

22, B(6)=0

where {Sioe, Sioc}’ is the part of {Siec, Sioc} Wwhich does not include contributions from

[L10c]a, and we have introduced!”

Sloc; w—d = ddl‘ V g(l") [»Cloc]w' (351)

The first term on the right-hand side of (3.50) is written only with [Eloc} 0 [Eloc} e

all of which can be determined by the flow equation. On the other hand, the second term
contains [Eloc] ; that cannot not be determined by the flow equation. However, this can

be absorbed into the effective action I'. In fact, by using the relations

6sloc;—d69ij = \/§2 W(Qb) gij7 5510c; —d5¢a = \/g aaW(¢)7 (352)

one finds that
2 1
2 2(d - 1)W(¢) {Sloc; —d> Sloc;O} = _ﬁ gijésloc;oégij + ﬁa(¢) ﬁ 5510c;05¢a7 (353)
and can rewrite the flow equation (3.39) as

% Gij00Gi; (P L Sloc;O) — 3%(¢) % Yo (F 1 Sloc;O)

2“?[4*1 2"134,1
1 /
- 2,€3+1 2(d - 1)W(¢) [{Slom Sloc} :|d‘ (354)

Thus, we have seen that the contribution from the term [Eloc] , can be absorbed into I'

by redefining it as I = I" — (1/2k3,;) Sioc;0- Note that I" still has vanishing weight.

Instead of redefining I', one can modify the Weyl anomaly without making any essential
change. To show this, we first notice that the second term in eq. (3.53) can be written as

a total derivative:

2 6ij 0S10¢;:009i5 = — /9 ViTj (3.55)

1"The weight shifts by —d after the integration because the weight of d%z is —d.
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with J} some local current. In fact, for infinitesimal Weyl transformations (o(x) < 1:

arbitrary function), we have

Stoci0[e” g(x), B(2)] = Shoci0lg (@), $()] = / d"z 0 () gi; 0000 ij- (3.56)

One can easily understand that Siee.o[g(x), ¢(2)] is invariant under constant Weyl trans-
formations (g;;(z) — €7¢;;(x), ¢*(x) — ¢*(x) with o constant), so that the left-hand side
of eq. (3.56) can generally be written as

/ d®z 0,0 () \/9 T4 (3.57)

with some local function J:. By integrating this by parts and comparing the result with
the right-hand side of eq. (3.56), one obtains eq. (3.55). Thus we have shown that eq.

(3.39) can be rewritten into the following form:

2 1
— q;: 01'0g;; — B8%(d)——= 01'0¢p*
\/gg] Gij B(¢)\/§ o)

=3 13”1 2(d = 1)W(¢) [{Sloc, Sloc}’]d —ViJi+ 5%)% 0S10c;000" (3.58)

This implies that when we take I' as the generating functional, the Weyl anomaly W,
has an ambiguity which can be always made into a total derivative term (since we set
p(¢) = 0).

Now that the flow equation is found to provide us with a unique form of Weyl anoma-

lies, we will consider two simple examples to illustrate how the above prescription works.

5D dilatonic gravity [35]:

We normalize the Lagrangian with a single scalar field as follows:

12 1.
£4 = _l_2 —R—I—ig]ang@]gb (359)
Then, assuming that all the functions W(¢), M(¢) and ®(¢) are constant in ¢, we can

solve Egs. (3.30)-(3.32) with V = —d(d — 1)/I> = —12/1*> and L = 1, and obtain

6 l l
W l? 27 2? (3 60)
that is,
6 .
Sieclg, @] = /d4x\/§ (—7 — 2R + 1297 0;0 @-gb) . (3.61)
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We can calculate [{Sloc, Sloc}] easily and find
4

Wi = oh [(SeSicd]

23
13 iy iy
= (—112R* + 14R;;RY + 112R g” 0;¢ 0;¢

2
2K

—14RY 0,00;6 + 124 (g7 90 9;0)” + 18 (V20)°) (3.62)

This is in exact agreement with the result in Ref. [84].

In the duality between IIB supergravity on AdSs x S5 and the large N SU(N) SYMy,
the radii of AdSs; and S® both have | = (47g,N)"/*1,. This gives the five-dimensional

Newton constant

1 Vol(S%)  mp

2k2  2k3,  12877g2 (3.63)
Thus, by setting ¢ = 0, we obtain
I8 |
Wy = 128712 (=112 R* + 14 R;;RV)
N2 .
= S (—13R*+ R;;RV), (3.64)

which exactly gives the large N limit of the Weyl anomaly of the the large N SU(N)
SYM, [34].18

7D pure gravity [35]:

By using the value in Eq. (3.37) with d = 6, the local part of weight up to four is given
by

10 g
Sioclg] = / d°z\/g (—7 — 4R + 31°320R* — l332Rin”) : (3.67)

18The Weyl anomaly of four-dimensional field theories is perturbatively calculated [34] as

¢ [ 2 2 a ) ) )
Wy = (@n)? (gR —2R;; + Rijkl) T e (R* — 4R}, + R;1) (3.65)
with
a:i(ns+(11/2)np+62nv) c= i(ns+3nF+12nv) (366)
360 ) 120

Here ng, ng and ny are the number of real scalars, Majorana fermions and vectors, respectively. The
result (3.64) can be obtained by setting ng = 6(N? — 1), np = 4(N? — 1) and ny = N? — 1 and taking
the large N limit.
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From the flow equation of weight w = 6, we thus find

We = —QLI{% [{SIOC’SIOC}L

l5 17 . .
T 22 (1128 RR;;RY — 33200 R* — 164 R™ R' Ry
+1320 RYV,V,R — 1128 RIV?R;; + 11280 RVZR),  (3.68)

which is in perfect agreement with the six-dimensional Weyl anomaly given in Ref. [31].

3.4 Callan-Symanzik equation

Next we derive the Callan-Symanzik equation [30]. Acting on Eq. (3.39) with the func-

tional derivative
0™ (21)000™ (22) - - - 60 (), (3.69)
and then setting ¢* = 0, we obtain the relation
[—29:;(2)80gi;(x) + 5“(¢(2)) 009" ()] (Oa, (21)Oay (22) - - - O, (¥))

+ Z §(z — 13)00, B(3(2))(O4, (21) - - Op(x1) -+ - On, (7)) = 0. (3.70)

Recall that I' is the generating functional of correlation functions with ¢* regarded as
an external field coupled to the scaling operator O,(z). By integrating it over R¢ and

considering the finite perturbation

9i;(7) = 1a*6;5, ¢"(z) = ¢°, (a,d": const.) (3.71)
we end up with the Callan-Symanzik equation

[a00a + 3(¢) 90¢"] (Ouy (1) Oy (22) - -+ Ou, (x))

+ > 70Oy (21) - Oplax) - O, (0a)) = 0. (3.72)

Here v? = 9,/3°(¢) is the matrix of anomalous dimensions.

3.5 Anomalous dimensions

Here we show that one can generalize to arbitrary dimension the argument in Ref. [30]

that the scaling dimensions can be calculated directly from the flow equation [35]. First,
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we assume that the bulk scalars are normalized as Lab(g) = 04 and that the bulk scalar

potential V(¢) has the expansion

V(0) =20 +12) m2 02+ Gabe Padvioe + -+ . (3.73)
a abc
with A = —d(d —1)/2(?. Then it follows from (3.30) that the superpotential TV takes the
form
W(¢):—2(d_1)+122A G2+ D Aabe atoe + - (3.74)
l - a Pq - abc PaPbPc 5 .
with
I\, = 12 <—d + B+ Am2 l2> , (3.75)
d
Gabe = (7 + A0+ A+ Ac) Aabe- (3.76)

The beta functions can then be evaluated easily and are found to be
Ba:_ZlAa¢a_3ZAabc¢b¢c+"' . (377)
a be

Thus, equating the coefficient of the first term with d — A,, where A, is the scaling

dimension of the operator coupled to ¢,, we obtain
Ay =d+ 1 =12 <d+ d2+4mgz2>. (3.78)

This exactly reproduces the result given in Ref. [5, 6, 7] (see also §2.2).

3.6 c-function revisited

We end this section with a comment on how the the holographic c-function can be formu-
lated within the framework developed in this section. For the Euclidean invariant metric

Gij(x,7) = a(7)720;;, the trace of the extrinsic curvature can be written as

4t 1 d_l_ -
(%) (m) = o



Thus, by introducing the “metric” of the coupling constants as

Gul) =5 () Llo) 381

the beta functions can be expressed as

5@ (=0 58) = -6 rel@), (382)

In this Euclidean setting, the monotonic decreasing of the c-function can be directly seen

by assuming that Lg(¢) (and thus G (¢) also) is positive definite:

0 e(B(@) = 5°(9) 0uc(B) = ~G*(3) uc(d) () <0 (3.83)

The equality holds when and only when the beta functions vanish.

Let us apply this analysis to the holographic RG flow from the N'=4 SU(N) SYM,
to the N =1 LS fixed point [16], which was mentioned in section 2.4. A vector multiplet
of the NV = 4 theory can be decomposed into a single N' = 1 vector multiplet V' =
(A;(x), A(z)) and three N = 1 chiral multiplets ®; = (p;(x),¥;(z)) (I = 1,2,3), each
field of which belongs to the adjoint representation of SU(N) and has the superpotential
W(P) = tr([®y, Py]P3). One can deform the theory by adding to the superpotential an
N = 1 invariant mass term §W(®) = (m/2) tr(®3)%. This gives rise to an additional term
in the potential, which can be written schematically as V = m tr[(¢3)>H\3)?]+m? tr[(¢3)?],
and the LS fixed point is obtained by taking the limit m — oco. On the other hand, such
deformations have a dual description in the A/ = 8 gauged supergravity theory, and in
particular, perturbations with the operators Oy (z) = tr[(3)*+H\3)?] and Oy (z) = tr[(p3)?]
can be treated by considering the time development of two scalar (bulk) fields gga(x, T)

(a = 1,2), whose superpotential is given by [16]
W (@) = e92/V8 [cosh o - <e“5$2/2 . 2) _3eV892/2 2] . (3.84)

We here have normalized the scalar fields such that they have the kinetic term with

Lab(g/g) = 04. The scalar potential is then given by

vE) =3 (@) -5 (W) (3.85)

The shape of the W (¢) and V(¢) is depicted in Fig. 1 and Fig. 2. The origin (¢,) = (0,0)

corresponds to the UV N = 4 fixed point, and, as one can see from the figures, there
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Figure 2: Scalar potential V(¢). The fixed points (+1n3,(2/v/6)In2) are saddle points, so that one

direction is relevant and the other irrelevant.

appear another fixed points at (¢*) = (£1n3,(2/v/6)1In2) (the two new fixed points are
related by Z, transformation ¢; — —¢1), which is the LS fixed point. Around the origin,

the superpotential is expanded as
1
W= 65 (6)2— (62 4 (356)

from which one finds that

=1, M=-1, X=-2 (3.87)
and thus their mass squared in the bulk gravity are calculated to be m? = —3 and
m3 = —4, respectively. The scaling dimensions are then obtained from the standard
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formula to be A; = 3 and A, = 2, which are precisely the scaling dimensions of O; and
Oy in the N' = 4 super Yang-Mills theory. On the other hand, around the IR fixed point,
the superpotential is expanded as W = —4 - 223 4+ ... from which one finds that the

—5/3

radius changes from [ = 1 to I’ = 3-27°/%. The mass-squared matrix 9,0, V (¢*) can be

calculated easily as

913/4 3 V6
0.0 V (9™ =
( b ( )) 32 \/6 1
13/4 [ 9 _ /7 0
N 2 VT (diagonalized), (3.88)

32 0 2+ 7

so that by using A" = 2 + \/m the scaling dimensions are calculated as A} =
1++7 (< 4) and A, = 3++/7 (> 4). This shows that at the IR fixed point the operators
acquire large anomalous dimensions and one of the two becomes irrelevant. The ratio of
the central charge can be calculated as before:

- G () -% o

which certainly is less than unity and agrees with the previous result. Note that the ridge
from the N = 4 fixed point to the A/ = 1 fixed point is given by the curve which has the
shape ¢y = (¢1)? around the origin. This is an expected result since such ridge should
preserve the N' = 1 symmetry and the two scalars are expressed as ¢, ~ m and ¢, ~ m?

around the origin [16].

4 Holographic RG and the noncritical string theory

In this section, we show that the structure of the holographic RG can be naturally un-
derstood within the framework of noncritical string theory. In particular, we demonstrate
that the Liouville field ¢ can be understood to be the (d + 1)-st coordinate appearing in
the holographic RG;

¢ (Liouville) «— 7= X% (4.1)
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4.1 Noncritical string theory

We first summarize the basic results on noncritical strings. The noncritical string theory
[85][86] is a world-sheet theory where only the two-dimensional diffeomorphism (Diff5)
is imposed as a gauge symmetry, while the usual critical string theory has the gauge
symmetry Diffy x Weyl. The nonlinear ¢ model action of the noncritical string theory
can be written as

Sale' (€ 1(O) = o [ PEVT (7 9(2(€) 06 1’ (€)

4ol

+T(x(€) + o Ry ®(x(§)) + ---). (4.2)
Here & = (£%) = (€1, £2) are the coordinates of the world-sheet, and v,,(€) is an intrinsic
metric on the world-sheet. x' (i = 1,2,---,d) are the coordinates of the d-dimensional

target space, and g;;(x), T'(x) and ®(x) are, respectively, the metric, tachyon and dilaton

fields in the target space. The partition function is defined as

L [ DO Dyw®
Vol(Diffy)

€xp (_SNLU [xz(f)v 'Vab(f)]) . (4‘3)

One can see from the above expression that the slope parameter o’ plays the role of
expansion parameter (o’ ~ h).
The convenient gauge fixing is the conformal gauge for which we set the intrinsic

metric 4 (§) to be

Y (€) = 7O A (€), (4.4)

where we have introduced a (fixed) fiducial metric 7,,(€), and the field ¢(&) is called the
Liouville field. This gauge fixing actually is not complete and leaves the residual gauge

symmetry consisting of local conformal isometries with respect to 7q:

D,yab(f) — Dgp(f) e_SLiouville[SD(g)v,g\ab(g)} (45)
Vol(Diffy) ~ Vol(Confs) ’

where SLiowville 18 @ local functional written with ¢(¢€) and the fiducial metric g(&).

As is the case for any scalar fields on the world-sheet, the Liouville field ¢ can be
regarded as an extra dimensional coordinate. This interpretation can be pursued further

if we change the measure of ¢ from the original one
Do) - 166l = [ Eevmise? = [ devFer Gop (4.6
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to the translationally invariant one [86]:

Do(€) — [|ogl2 = / Per/7 (50)* (4.7)

It will induce a Jacobian factor which can be absorbed into the the bare fields g;;(z), T'(z)
and ®(z) due to the renormalizability of the NLo model. We thus obtain the following

expression for the partition function:

Dz'Dy 4 S
Z — NLo Liouville
Vol(Confy) = ©
DDy 5, (&3 Fab]
— o [T5%P5Ya 48
Vol(Confy) ’ (48)

where the effective action S NLo [T% 05 Yap] now has the form

~ 1 — . . .
SNLe = 4ﬂa,/d2§\ﬁ [”Yab (0atp oo + Gij(w, §) Oat” Do’

+T(z, ) + O/R:Y-(f)(x,go) + } : (4.9)

Here we have rescaled ¢ such that it has the kinetic term in a canonical form. The above
expression shows that one can introduce a (d + 1)-dimensional space with the coordinates

Xt = (z',¢) (i =1, ...,d) and the metric
ds® = G (2, 0) dX" dX" = (dp)* + Gij(z, @) da® da’. (4.10)

Those coefficients cannot take arbitrary values since we must impose the conformal sym-
metry on the effective action, which is equivalent to choosing the coefficients such that
their beta functions vanish. One can easily show that the equations 3 = 0 can be derived
as the equations of motion of the following effective action of the target space:

S — /ddx dp\/Ge 2 (2/\0 C R4V + (VT2 4+ m2T? + 0(0/)) (4.11)
with 2A¢ = 2(d — 25)/3a’ and m2 = —4/a’. Since the residual conformal isometry can
be translated into the Weyl symmetry, the above discussion shows that the d-dimensional

noncritical string theory is equivalent to a d-dimensional critical string theory.

4.2 Holographic RG in terms of noncritical strings

As will be further investigated in the following sections, one of the basic assumptions in

the holographic RG is that the (Euclidean) time development should be regular interior
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of the bulk. It turns out that this corresponds to the so-called Seiberg condition [87] in
the noncritical string theory. Let us consider a (d 4 1)-dimensional bosonic string theory

in the linear dilaton background [88], although this does not have asymptotically AdS

geometry:
9ij =0i5, P=Qe. (4.12)
The coefficient @ is determined from the conformal invariance as Q* = —Ag/2 = (25 —

d)/6¢/. Then the tachyon vertex with Euclidean momentum k,, = (k;, ) is expressed by
f — ei kixi4ap

— % ki Ha-Qp (4.13)

Here we extract the factor e? = ¢@%¥ which comes from the curvature arising when an
infinitely long cylinder is inserted in the world-sheet. Thus the momentum along the
cylinder is effectively &, |cytinger = (ki, @ —@Q), so that the convergence of the wave function

inside the bulk (¢ — 400) is equivalent to the Seiberg condition v — @ < 0.

Furthermore, the bulk IR cutoff 7 > 7y (or ¢ > ¢y) is equivalent to the small-area
cutoff of the world-sheet [89]. In fact, when the (d + 1)-dimensional target space is
asymptotically AdS, the integration over the zero mode of ¢(&) diverges around ¢ ~ —oc.
This divergence can be regularized by introducing the cutoff g as we did in the preceding

sections:

/_Z de / Dp(€) e = /@ :O dip / D'p(€) e~ 5o, (4.14)

On the other hand, the area of the world-sheet can be expressed by the zero mode through

the volume element /7 = €%, so that this cutoff actually sets a lower bound on the area:

A= [vi=[erz [en -, (4.15)

Thus, the holographic RG describes the development of string backgrounds as the mini-
mum area of world-sheet is changed, which is equivalent, after the Legendre transforma-

tion, to the development with respect to the two-dimensional cosmological constant.

The above two features can be best seen when one sets up the holographic RG within

the framework of noncritical string theory, although it is mathematically equivalent to the
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critical string theory. Taking the translationally invariant measure for the Liouville field
 is necessary in order for ¢ to be interpreted as the RG flow parameter. Moreover, those
two features are realized automatically in (old) matrix models. In fact, in such matrix
models there exists a bare cosmological term which gives rise to the Liouville wall so that
any physically meaningful wave functions are regular inside the bulk of the target space,
which is nothing but the Seiberg condition. Furthermore, the continuum limit is obtained
by fine-tuning couplings such that contributions from surfaces with large area survive. In
fact, the contribution from surfaces with small area is always non-universal and discarded
in taking the continuum limit, and the cutoff on the (physically) small area is naturally

set by introducing the renormalized cosmological constant term.

The nonlinear o model action Syi, (2", Yap) With finitely many “couplings” g;;(x), ®(z)
and T'(z) gives a renormalizable theory, which means that these couplings determine the
structure of the (d+1)-dimensional target space X* = (', ¢) for any value of ’. Actually
the dependence of the renormalized fields on ¢ is totally determined by the conformal
symmetry on the world-sheet. This observation implies that the holographic RG structure
should be preserved for all orders in the o’ expansion. We will give a few evidences to

this expectation.

5 Holographic RG for higher-derivative gravity

In this section, we investigate gravity systems with higher-derivative interactions and
discuss their relationship to the boundary field theories [37][38]. As we show in the
§5.2, for a higher-derivative system, we need more boundary conditions to determine
the classical behavior uniquely than those without higher-derivative interactions. Thus,
the holographic principle does not seem to work for the higher-derivative gravity at first
sight. The main aim of this section is to see that the holographic structure still persists
for such systems by showing that the behavior of bulk fields can be specified only by
their boundary values. This statement is not surprising because higher-derivative terms
in string theory come from o' corrections: as we have seen in the the case of non-critical
strings, the renormalizability of the nonlinear ¢ model assures the holographic structure
to exist for that system. It is natural to expect that the critical string theory also admits

a similar structure.
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As a warming-up, we first analyze the system that has the Euclidean symmetry at
each time-slice. We introduce a parametrization with which one can easily investigate
the global structure of the holographic RG of the boundary field theories. We show that
there appear new multicritical fixed points in addition to the original conformal fixed
points existing in the AdS/CFT correspondence. After grasping basic ideas, we then
formulate the holographic RG for higher-derivative gravity in terms of the Hamilton-
Jacobi equation, and show that higher-derivative gravity always exhibits the holographic
behavior even with higher-derivative interactions. We also apply this formulation to a
computation of the Weyl anomaly and show that the result is consistent with a field

theoretic computation.

5.1 Holographic RG structure in higher-derivative gravity

In this subsection, we exclusively consider the bulk metric with d-dimensional Euclidean
invariance. We introduce a parametrization which allows us to easily investigate the global

structure of the holographic RG of the boundary field theory.

The bulk metric with the d-dimensional Euclidean symmetry can be written in the fol-
lowing form by setting gi; = e=24(") § N=N (1) and i = 0 in the ADM decomposition

(3.1):19

R

ds* = N(7)2dr* + e 217 §;; da'da? . (5.1)

For this metric, the unit length in the d-dimensional time-slice at 7 is given by a = e%(7).
Since the unit length should grow monotonically under the RG flow, dq(7)/dr must be
positive in order for the bulk metric to have a chance to describe the holographic RG flow

of the boundary field theories.

We consider two kinds of gauge fixings (or parametrizations of time). One is the

temporal gauge which is obtained by setting N(7) = 1:
ds* = dr? 4 e 217§, da dad (5.2)

The other is a gauge fixing that can be made only when the above condition

dq(7)
dr
Yq(7), N(7), etc. are bulk fields, but in this and the next subsections, we do not place the hat (or

>0 (—o0 <7< ) (5.3)

bar) on (the classical solutions of) such bulk fields in order to simplify expressions.
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is satisfied. Then ¢ itself can be regarded as a new time coordinate. We call this
parametrization the block spin gauge [38].2° By writing ¢(7) as ¢, the metric in this

gauge is expressed as?!
ds® = Q(t)2dt* + e §;; da'da’. (5.4)
Since two parametrizations of time (temporal and block spin) are related as

t=q(71), (5.5)

together with the condition (5.3) the coefficient Q(t) is given by
Q(t) = dq(r)dr (>0), (5.6)
T=q"1(t)

which we call a “higher-derivative mode.”?* Note that a constant Q (= 1/I) gives the
AdS metric of radius [,

ds? = dr’+e /'ds? (temporal gauge)
= [Pdt* + e *dx? (block spin gauge), (5.7)

with the boundary at 7 = —o0 (or t = —00).

Here we show that the condition (5.3) actually sets a restriction on the possible ge-
ometry, by solving the Einstein equation both in the temporal and block spin gauges. In

the temporal gauge, the Einstein-Hilbert action
Sy — / A X /G [2/\ - fz] (5.8)
Mgy

becomes

Sp=—d(d—-1)V, / dre=4a™) (q(7)2 + %2) : (5.9)

20In this gauge, the unit length in the d-dimensional time slice at t is given by a(t) = age’ with a
5

positive constant ag. If we consider the time evolution ¢ — ¢ + &t, the unit length changes as a — e°ta.
In other words, one step of time evolution directly describes that of block spin transformation of the

d-dimensional field theory.
21This form of metric sometimes appears in the literature (see, e.g., [90]).
22() actually appears as a new canonical valuable in the Hamiltonian formalism of R? gravity. See the

next subsection.
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up to total derivatives. Here we have parametrized the cosmological constant as A =
—d(d — 1)/21%, and V;, is the volume of the d-dimensional space. A general classical

solution for this action is given by

dg 11—Ce%/!

This shows that the geometry with a non-vanishing, finite C' (C' # 0 or co) cannot be
described in the block spin gauge, since ¢ vanishes at 7 = —(I/d)InC, violating the
condition (5.3). In fact, in the block spin gauge (5.4), the action (5.8) becomes

SE' = —d(d — 1)Vd/dt€dt (% + Q) 5 (511)

which readily gives the classical solution as

1
Qt) = 7 (>0). (5.12)
This actually reproduces only the AdS solution among the possible classical solutions

obtained in the temporal gauge.

Next we consider a pure R? gravity theory in a (d + 1)-dimensional manifold My,

with boundary ;. The action is generally given by

y — ~ ~ ~
S = dHLX /G <2A ~R—aR* - bR2, - chW)
Mgy
d
with some given constants a,b and c¢. Here X* = (z',t) ( = 1,---,d) and we set the

boundary at ¢t = #y. K;; and R;;,; are the extrinsic curvature and the Riemann tensor on
Y4, respectively. The first term in the boundary terms in (5.13) is the Gibbons-Hawking
term for Einstein gravity [81], and the form of the rest terms are determined by requiring

that it is invariant under the diffeomorphism
XH— X" = fH(X), (5.14)
with the condition

fix t=ty) = to, (5.15)
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which implies that the diffeomorphism does not change the location of the boundary. A
detailed analysis on this condition is given in Appendix D.?* (Other studies of boundary

terms in higher-derivative gravity can be found in [91] and [92].)

In the block spin gauge, the equation of motion for @ reads [38]

QO +12Q% —dQQ = 1A (21\@2 +d(d—1) — 33@2), (5.16)
where - = d/dt, and A and B are given by
A=2d(4da+ (d+1)b+4c), B= d(dT_?’) (d(d+ 1)a+ db+ 2c). (5.17)

Here we set ¢ to run from #; to co. The classical action S is obtained by substituting
into S the classical solution Q(t) that satisfies the boundary condition Q(ty) = Qo and
has a regular behavior in the limit ¢ — +oo. It is a function of the boundary value,
S[Q(t)] = 5(Qo, to)-

In the holographic RG, this classical action would be interpreted as the bare action of
a d-dimensional field theory with the bare coupling Qy at the UV cutoff Ay = exp(—ty),
as was discussed in detail in §2 and §3. Our strategy to investigate the global structure
of the RG flow with respect to ¢ is as follows. We first find the solution that converges
to () =const. as t — oo in order to have a finite classical action. We next examine the
stability of the solution by studying a linear perturbation around it. Since the solution
@ =const. gives an AdS geometry, the fluctuation of ) around it is regarded as the motion
of the higher-derivative mode in the AdS background, which leads to a holographic RG

interpretation of the higher-derivative mode.

Following the above strategy, we first look for AdS solutions (i.e., Q(t) = const.). By

parametrizing the cosmological constant as
A = —d(d —1)2I* + 3B2l*, (5.18)
the equation of motion (5.16) gives two AdS solutions,

; 11° = 1,
Q? = (5.19)
d(d—1)3B —-11* = 115,

23The boundary action in (5.13), except for the first term, can be interpreted as the generating func-
tional of a canonical transformation which shifts the conjugate momentum of the higher-derivative mode

by a local function.
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where the solution @ = 1/I, exists only when B > 0.2* We denote by AdS®) (i = 1,2)
the AdS solution of radius /;. We assume that we can take the limit a, b, ¢ — 0 smoothly,
in which the system reduces to Einstein gravity on AdS of radius [ = ;. We also assume
that this AdS gravity comes from the low-energy limit of a string theory, so that its
radius /; = [ should be sufficiently larger than the string length. On the other hand, the
AdS® solution, if it exists, appears only when the higher-derivative terms are taken into
account. As the higher-derivative terms are thought to stem from string excitations, their
coefficients a,b and ¢ (and hence A and B) are O(c’). Thus the radius of the AdS® is
much smaller than that of AdS(™.

Next, we examine the perturbation of classical solutions around (5.19), writing Q(¢)

as
Qt) = 1; + X;(t). (5.20)
The equation of motion (5.16) is then linearized as
X, —dX; — Pm?X; =0, (5.21)
with
m; = —2A (2Al; + 3BI7) . (5.22)
The general solution of (5.21) is given by a linear combination of the functions
fE(t) = exp KdQ + 4\ /d?4 + zgmg) t} : (5.23)
Here [?m? can be easily calculated from (5.19) and (5.22) as
imi = 2A(d(d—1)I* —6B) ,
(5.24)

Im3; = —6BA-d(d—1)I>—6Bd(d—1)I* - 3B .

perturbation around AdS®

From (5.23) and (5.24), we see that the behavior of fi°(¢) depends on the sign of A. For
A > 0, recalling that A is O(), f;F(t) grows while f; (t) damps very rapidly. On the

24We consider only the case Q > 0 because of the condition (5.3).
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other hand, for A < 0, the value in the square root in (5.23) becomes negative, and thus

both fif(t) oscillate rapidly.

perturbation around AdS®

We assume B > 0 because, as mentioned above, AdS® exists only in this region. For
A > 0, both of fi(t) grow exponentially, because (2m2 < 0. On the other hand, for
A <0, o (t) grows and f, (t) damps exponentially.

Besides, as we explained before, the solution of interest to us is the one that converges
to either AdS(™) or AdS® as t — oo, satisfying the condition that Q(t) be positive for the
entire region of ¢ [see (5.6)]. It then turns out that the classical solutions should behave
as in Figs. 3 and 4. In fact, a numerical analysis with the proper boundary condition at
t = +oo indicates these behaviors upon choosing the branch f;(¢) around @ = 1/l;. The

result of the numerical calculation for A > 0 and B > 0 is shown in Fig. 5.

Q B>0 Q | B<0
1
I2
B e Al =
I1 1

-® t - t

Figure 3: Classical solutions Q(¢) for A > 0.

ol \\\S B>0 Q | B<0
1

I2 There is no solution
which coverges to
AdS geometry.

Figure 4: Classical solutions Q(¢) for A < 0.
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Figure 5: Result of the numerical calculation of classical solutions Q(7) for the values d = 4, A = 0.1,
B=0land!=1(1/ly =1and 1/ls = 6.24).

Now we give a holographic RG interpretation to the above results. We first consider
the AdS() solution. Looking at the equation (2.22), the equation (5.21) is nothing but
the equation of motion of a scalar field in the AdS background of radius [, with the mass

squared given by

mi = —2A (2AI* + 3BI?)
=2A(d(d—1) —6Bl?). (5.25)

Thus for A > 0, the higher-derivative mode () is interpreted as a very massive scalar
mode, and thus it is coupled to a highly irrelevant operator around the fixed point, since

its scaling dimension is given by [6][7]?°

A=d2+\/d4+2m2 > d. (5.26)

This can also be understood from Fig.3 which depicts a rapid convergence of the RG
flow to the fixed point Q(t) = 1/I. On the other hand, for A < 0, the mass squared of
the higher-derivative mode is far below the lower bound for a scalar mode in the AdS™
geometry, —d?/41% [7], and the scaling dimension becomes complex. Thus, in this case,
the higher-derivative mode makes the AdS(!) geometry unstable, and a holographic RG

interpretation cannot be given to such a solution.

25The exponent of the solution f~ in (5.23) is equal to d — A.
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We note here that, to obtain the CFT corresponding to the AdS™ as the continuum
limit is taken, ¢ — —oo, we must fix the higher-derivative mode at the stationary point,
@ = 1/1;. Roughly speaking, this is realized by tuning the boundary value of the conjugate
momentum of the higher-derivative mode to be zero. In the next subsection, we adopt

this boundary condition to derive the flow equation for the R? gravity theory.

We next consider the AdS®. For A > 0 and B > 0 in Fig. 3, it can be seen that
classical trajectories begin from AdS® to AdS™. In the context of the holographic RG,
this means that the AdS® solution Q(t) = 1/I5 corresponds to a multicritical point in the
phase diagram of the boundary field theory. From (5.19) and (5.22), the mass squared of
the mode @ around the AdS® can be calculated as

mj = —2A (d(d — 1) — 6BI%) (5.27)
and if this mass squared is above the unitarity bound,
Ism3 = —6BAd(d — 1)I> — 6Bd(d — 1)I*> — 3B > —d*4, (5.28)
the scaling dimension of the corresponding operator is given by
A =d2+\/d?4+ 12m3 = d2 +/d?4 — 6BA. (5.29)

For example, if we consider the case in which d = 4, a = b = 0 and ¢ > 0,° we have
A =32c>0and B =8¢/3 > 0, and thus the scaling dimension of @ around the AdS®
is found to be A &2 2+ \/m It would be interesting to investigate which conformal field
theory describes this fixed point.

We conclude this subsection with a comment on the c-theorem. Since the trace of
the extrinsic curvature, K , 1s given by K ~ @ in the block spin gauge, we see from Eq.
(2.66) (or Eq. (3.80)) that the c-function [16] is given by ¢(Q) = Q'™ Fig. 3 shows
that it increases when A > 0, but this does not contradict the assertion of the c-theorem,
because in this case, the kinetic term of Q(¢) in the bulk action has a negative sign. This
suggests that the obtained multicritical point defines a nonunitary theory like a Lee-Yang
edge singularity.

26This includes IIB supergravity on AdSs x S°/Z5 which is AdS/CFT dual to A" = 2 USp(N) super-

symmetric gauge theory [39][40].
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5.2 Hamilton-Jacobi equation for a higher-derivative Lagrangian

In the previous subsection, we pointed out that the boundary value of the higher-derivative
mode must be at a stationary point in order to implement the continuum limit of the
boundary field theory. To clarify this point further, in this subsection, we give a detailed
discussion to the boundary conditions for higher-derivative modes that incorporate the
idea of the holographic RG in terms of the Hamilton-Jacobi equation. We here discuss a
point particle system, and will extend our analysis to systems of higher-derivative gravity

in the next subsection.

A dynamical system with the action®”

t

S{q(7)] :/t/ dr L(q,4,q) (5.30)

is described by the equation of motion which is a fourth-order differential equation in time
T

d*dr* (0LOG) — ddr (OLAq) + OLAq = 0. (5.31)
This implies that we need four boundary conditions to determine the classical solution
uniquely. Possible boundary conditions can be found most easily by rewriting the system

into the Hamiltonian formalism with an extra set of canonical variables (@, P) which

represents ¢ and its canonical momentum.

The Lagrangian in (5.30) is classically equivalent to

L'(q,Q,Q:p) =L (q, Q, Q) +p(@—Q), (5.32)

where p is a Lagrange multiplier. We then carry out a Legendre transformation from

(Q, Q) to (Q, P) through

Assuming that this equation can be solved with respect to Q <E Q(q, Q; P)) , we introduce

the Hamiltonian

H(q,Q; p. P)=pQ+ PQ(e,Q; P) — L(4.Q.Q(0,Q; P)), (5.34)

2"This ¢ is the coordinate value of the boundary and has nothing to do with the time variable in the

block spin gauge.
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and rewrite the action (5.30) in the first-order form;

Sl0.Q:p. Pl = [ dr[pi+ PO~ H@.Q:p.P)). (5.3)

tl

where Q is now the time-derivative of the independent variable ). The variation of the

action (5.35) reads

S = /; dr [5;9 (G — OHOp) + 6P (Q - aHaP)
—5q(p+ OHIG) — 6Q (P + aHaQ)]
+ (pdg + P6Q) )Z , (5.36)
and thus the equation of motion consists of the usual Hamilton equations,
G=0Hdp, Q=0HOP, p=—0Hdq, P=-0HOQ, (5.37)
plus the following constraints which must hold at the boundary, 7 =¢ and 7 = t':
pog+PéQ =0 (r=t1). (5.38)

The latter requirement, (5.38), can be satisfied by imposing either Dirichlet boundary

conditions,

Dirichlet : dg=0, Q=0 (r=tt), (5.39)
or Neumann boundary conditions,

Neumann: p=0, P=0 (r=t1t), (5.40)

for each variable ¢ and Q. If, for example, we take the classical solution (7, Q,p, P) that
satisfies the Dirichlet boundary conditions for all (¢, Q) with specified boundary values as

Gr=t)=q. Qr=t)=Q, and gr=t)=¢, Qr=t)=Q",  (541)

then after plugging the solution into the action, we obtain the classical action that is a

function of these boundary values,

S(t,q.Q; ', ¢, Q") = S [q(7),Q(7); p(7), P(1)] . (5.42)
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However, this classical action is not relevant to us in the context of the AdS/CFT corre-
spondence, since we must further set the boundary value ) of the higher-derivative mode
to a stationary point in order to implement the continuum limit of the boundary field
theory. This requirement is equivalent to the condition that the higher-derivative mode

has vanishing momentum. We are thus led to use mixed boundary conditions [37]:
0g=0 and P =0 (r=t1), (5.43)

that is, we impose the Dirichlet boundary conditions for ¢ and Neumann boundary con-
ditions for @). In this case, the classical action (to be called the reduced classical action)

becomes a function only of the boundary values ¢ and ¢’:
S =258(tqt,q). (5.44)

If we further demand the regular behavior in taking ¢ — 400, the classical action depends
only on the initial value. The same argument can be applied to dynamical systems of
(d + 1)-dimensional fields with higher-derivative interactions of arbitrary order [37]. Fur-
thermore, the discussion in the previous subsection shows that higher-derivative modes
should take stationary values in order to get a finite result in approaching the boundary.
This supports our expectation that for any bulk system of gravity with higher-derivative
interactions, if we require the reqularity inside the bulk and the finiteness near the bound-
ary, the Fuclidean time development is completely determined only by the boundary values
of the original fields. That is, the holographic nature still exists for higher-derivative sys-

tems.

Now we derive an equation that determines the reduced classical action (5.44). This
can be derived in two ways, and we first explain a more complicated, but straightforward,
way since this gives us a deeper understanding of the mathematical structure. To this
end, we first change the polarization of the system by performing the canonical transfor-

mation?®

S=65- /t,t d(PQ). (5.45)

28The following procedure corresponds to a change of representation from the -basis to the P-basis

in the WKB approximation:

U(t,q,Q) = eShae@)/h \/I\/(t, q,P) = eig(t’q’P)/ﬁ = /dQ e PR/ U(t,q,Q).
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Although the Hamilton equation does not change under this transformation, the boundary

conditions at 7 =t and T = t' become
pog— QP =0 (r=t1t). (5.46)

These boundary conditions can be satisfied by imposing the Dirichlet boundary conditions

for both § and P:

g(tr=t)=gq, P(r=t)=P, and q(r=t)=¢, P(r=t)=PF". (5.47)

Substituting this solution into S , we obtain a new classical action that is a function of

these boundary values,
S(t.q, P t',q, P) = S [q(r),Q(7); B(7), P(7)] . (5.48)

By taking the variation of S and using the equation of motion, we can easily show that

the new classical action S obeys the Hamilton-Jacobi equation:

850t = —H (q, —980P; +850q, P) ,
050t — +H (q’, +0SOP"; —0504 . P’) . (5.49)

The reduced classical action S(t, q;t',¢’) is then obtained by setting P=0 in S
S(t.qt.q) =8t qP=0;t,q, P=0). (5.50)

Note that the generating function P() vanishes at the boundary when we set P=0. In
Appendix E, we briefly describe how the Hamilton-Jacobi equation (5.49) is solved for a

system of a point particle.

In solving the full Hamilton-Jacobi equation, we must impose the regularity for S (t,q, P)
in the limit ¢=0 when P =0. This is because the higher-derivative term is regarded as
a perturbation and the reduced classical action must have a finite limit for ¢ — 0. One
can see that the Hamilton-Jacobi equation reduces to an equation involving the reduced
action. We call it a Hamilton-Jacobi-like equation. However, once the regularity condition
is imposed, we have an alternative way to derive the Hamilton-Jacobi-like equation with

greater ease. In fact, for any Lagrangian of the form

L(¢', ¢, i) = Lo(q',¢") + c Li(q', &', ") , (5.51)
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one can prove the following theorem, assuming that the classical solution can be expanded

around c¢=0:%

Theorem [37]

Let Hy(q,p) be the Hamiltonian corresponding to Lo(q,q). Then the reduced classical
action S(t,q; t',q")=So(t,q; t',¢') +cSi(t,q; t',q) + O(c?) satisfies the following equation
up to O(c?):

—0S0t = H(q,p), pi=059q¢", and +0Sot' =H(q,p), p,=-0S0¢", (5.52)

where

H(q.p) = Holq,p) — ¢ L1(q. f1(q, D). f2(q, ).
f{(q7p) = {H()aqz} - aHOapH
f3(a.p) = {Ho, {Ho,q'}} = 0°HoOp:0¢’ OHoOp; — 9° HoOp;Op;0HoO¢’ .

OF 0G  0G OF
F = - — -
({ (¢.p).Gla.P)} =555~ 5, @qz)

(5.53)

We call H a pseudo-Hamiltonian.

A proof of this theorem is given in Appendix F. One can see easily that this correctly
reproduces (E.11) and (E.12) for the Lagrangian given in (E.1)—(E.3).
5.3 Application to higher-derivative gravity

Here we apply the formalism developed in the previous subsection to a system of higher-

derivative gravity with the action (5.13). We first derive the Hamilton-Jacobi-like equation

29As long as we think of Li as a perturbation, any classical solution can be expanded as
q(r) = @o(7) + cqi (1) + O(c).

Here @ is the classical solution for Lo, and ¢ is obtained by solving a second-order differential equation.

Note that we can, in particular, enforce the boundary conditions
Qo(t=t)=¢, @(r=t)=0 and G(r=t)=¢', q@(r=t')=0.

In this case, due to the equation of motion for gy(7), the classical action is simply given by

t

Sa i ) = / dr [ Lo(do. do) + ¢ L1 (@0. s do)] + O()

t

This corresponds to the classical action considered in Ref. [40].
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of the system. We also show that the coefficients x1,-- - , x5 must obey some relations so

that we can impose the mixed boundary condition consistently.

The action (5.13) is expressed in terms of the ADM parametrization as
S = / dr / d'e\/G [£0(5. K: N.3) + £4(5. K. K: K.3)]. (5.54)
where®”

1 ~ o~ ~
=~ Ly=2A- R+ K} — K? (5.55)
N N

—_

~ L) = —al® — bR — e + | (—6a + 221) K2 + (20 — xl)f(ﬂ I

=)

] = 2020 + 4 — @) (K2)y; + (2b+ 22, — x2)fcf<ij] Ri
+2(6¢ 4 29) K K j R
—2(2b+ ¢ — 3u5) KL + (4 + day — 25) KK,

— (9a + b+ 2¢c — 2x4) <IA(Z2]>2 + (6a — b+ 6z3 — x4)[A(2IA(?j

— CL+ZE3)K4
— (4b + 23:1 — xg)K”V VIK + 2(b —4c + 3:2)[? ﬁjﬁkf("”

+
o
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with

and

Ty=— (f(] N VLK — VN Ry — VN Ry + ﬁﬁjﬁ) . (5.58)

v

For details of the ADM decomposition, see Appendix C.

30We here use the following abbreviated notation: I/(\'f] = I/(\'Z I/(\'ij . 1?11, (I?Q)ij = I?zkf?f
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We now derive the Hamilton-Jacobi-like equation of R? gravity by using the Theorem,
(5.52) and (5.53). We first rewrite the Lagrangian density of zero-th order, Ly, into the

first-order form
Lo — 719G, — Ho, (5.59)
where the zero-th order Hamiltonian density H, is given by
Ho(3.7 N.3) = N (73 = 14— 17° = 20+ R) — 2%, V,7". (5.60)

Then by using the Theorem, the pseudo-Hamiltonian density is given by

H(/g\aﬁa ]/\\[7/):) = HO(/g\a%\a Na/):) - ‘C’l(/g\a [/(\'O(g,ﬂ')’f/(\'l(/g\’%)’ ]/\\[7/):) : (561>

Here [A(?j@, 7) is obtained by replacing @](x) in (5.57) with {f d%y/3 Ho(y), @](x)},

and it is calculated to be
Ky =7 —1d =17 gy; . (5.62)

On the other hand, K L= { [ doy\/GHo(y), K ?j} is found to be equivalent to replacing
Eij in ﬁl by
L0 = —12(d—1)? [z(d — 1A+ (d— DR+ (d—1)7% — 372| Gy,

~

+ Rij + 2(7%)i; — 3d — 1770, . (5.63)

Using Egs. (5.59)—(5.63), we obtain the following Hamilton-Jacobi-like equation for the

reduced classical action [37]:
0 = /ddx\/gﬁ (g(z), 7(x); N(x), \(x))
= [ @5 [N@ Rlg(a). 7)) + X @) Pilg(a)n@)] . (500

-1 48

mile) = V3 0gi(x)

(5.65)
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where®! g;; and 77 is the boundary values of g;; and 7, respectively, and

H(g,m) = m;—1d— 17> —2A+ R
+ oy ij + a9 7T7T?j + a3 (7?1-23-)2 + 0y 7T27TZ-2]- + a5 m
+ 5 A7rz-2j + B AT? + B35 Rﬂ'?j + By Rm?
+ 05 Rij(7r2)ij + B Ryj T + B, Rijki kit
+71 A+ AR+ s R* + R 4 75 Ry (5.66)
-2V, (5.67)

,Pi(gaﬂ')

with
o =2¢, agy=2x5(d—1),
s =14(d — 1) [4@ 4 (d? = 3d + 4)b+ A(d — 2)(2d — 3)c
—2(d — 1)(dzy + 3x5) |,
oy =12(d — 1)* [~4a — (d* — 3d + 4)b — 4(2d* — 5d + 4)c
— 3dzs + (2d* — Td + 2)zy — 3(2d — 1)z5]
a5 =14(d — 1)* [4da + (d° — 3d + 4)b + 4(2d* — 5d + 4)c
+2(3d — 4)z5 — 2(d* — 6d + 6)xy + 2(5d — 6)x5] , (5.68)

By =1(d—1) [4da —d(d—3)b— 4(d — 2)e — (d — 1)(das + 3:155)} ,
B =1(d = 1)*| ~ dda+ d(d — 3)b+ 4(d — 2)c

— 3dag + (@ — 2 — )z, + 3(d — 2)as |,
B3 =12(d — 1)*|4a + (d* — 3d + 4)b — 4(3d — 4)c

—(d—1)(dzr + s — (d— 2)74 + 3:1;5)} ,

Be=12(d — 1)*] — da — (& — 3d + )b+ 4(d — 2)c
—(d—=1)(d—4)zry —3(d — 1)xg + 3(d — 2)x3
—(d? — 8d + 10)aq + 3(3d — 4)x5} ,

55 =16¢c + 31‘5, 56 = 2(1‘1 + 229 — x4 — 31‘5)d - 1, ﬁ'y = —12¢ — 21‘2, (569)

31'We have ignored those terms in H that contain the covariant derivative V. This is justified when
we consider the holographic Weyl anomaly in four dimensions. Actually, it turns out that they give only

total derivative terms in the Weyl anomaly.
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2[4da+ (d+1)b+ 4c|,
o = 1(d 2[4da—dd 3)b — 4(d — 2)c—(d—1)(dx1+x2)},
s = 14(d — 1)2[4(1—1- (d? — 3d +4)b — 4(3d — 4)e + 2(d — 1)((d — 2)z1 — xQ)],

V4 = 4c + x4, ¥5 = C. (5.70)

Here R;ji; is the Riemann tensor made of the metric tensor of the d-dimensional boundary
7 = 7p. Since the (true) classical action S[g(z), P(z)] is independent of the choice of N
and A" (and thus, so is S[g(z)]), from Egs. (5.64)—(5.67) we finally obtain the following

equation that determines the reduced classical action:

~ G(r)) = D (g (2). 79 (2)) = wisz_—l o5
H(gig(@), 7 (@) =0, Pi(gy(z), 77(2)) =0, 7(x) V7 09ij(x)

We make a few comments on the possible form of the boundary action S, and the

(5.71)

cosmological constant A. As discussed above, in order that the boundary field theory has

a continuum limit, the geometry must be asymptotically AdS:
ds? — dr* 4 e /'y (x)da'da?  for T — —oo0. (5.72)

This should be consistent with our boundary condition P¥ =0. Explicitly investigating
the equations of motion derived from the action (5.54), we can show that this compatibility

gives rise to the relation
Pyt dag+ x5 = —43<d(d+ 1)a+db+2c). (5.73)

It can also be shown that the asymptotic behavior (5.72) determines the cosmological

constant A as

A = —d(d — 1)21% + d(d — 3)21* [d(d +1)a+db+ zc] . (5.74)

5.4 Solution to the flow equation and the Weyl anomaly

We first note that the basic equation, (5.71), can be rewritten as a flow equation of the

form [37]

{S,S}+{S.5.8,8} = Ly, (5.75)
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with

(v9)* {5, 5} = [(8589i;)* — 1d — 1(g;5058gs;)*
+ By A (658gi,)° + B2 A (91j058g:,)° + B3 R (856g4;)°
+ B1 R (9:j0509:;)° + B5 Rijgri0S0gindS3g;
+ B6 Rij0560i; gri0.S0gr + B Rijrnd Sdgi 656g;1] , (5.76)

(v9)*{S,8,8,8} = [041 (088gi;)" + s (grdSOgi) (6589:5)° + a3 ((555%]')2)2
+ a (gri0SOgn)° (555%3‘)2 + as (gz‘j555gz‘j)4] : (5.77)

Ly =2A— R—mA* —9AR — 3R* — v R}, — v R . (5.78)

As in §3, we decompose the reduced classical action into the local part and the non-local

part,
1 1
377 S19(@)] = 5 Suclg(@)] = Ty @) (5.79)

Following the prescription given in §3, we first determine the weight 0 and 2 parts of the
Slom

[‘Cloc]o = W: [Eloc]g =—-0 R, (580)

W= —2(d— 1)l+1l3[—4d(d+1)@—4db—80+d(d2x3+dx4+x5) ,
<I>:ld—2—2(d—1)(d—2)l[d(d+ 1)@+db+20}
+ 1l [dl‘l + Ty + 3(d2$3 + dl’4 + 33'5)2(d — 1)] , (581)

where (5.74) has been used.

For d = 4, the weight 4 part of the flow equation is an equation that the generating

functional I" obeys,

2[{5106, F}L + 4[{51@, Stoes Stoc; F}]4
— 2—/1% ([{Sloc, SlOC}L + |:{Sloca Stoc, Sloc Sloc}L

+ 73R + 743?]' + ’Y5Ri2jkl)- (5.82)
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From this, we can evaluate the trace of the stress tensor for the boundary field theory:

<Tii>g = 21/9 9ij01'0g;. (5.83)

In fact, using the values in (5.81), we can show that the trace is given by [37]
(T}), = 21%2x2 [ (—124 4 5a31* 4 b31* + ¢31%) R* + (18 — bal® — bl* — 3c2l*) R},

+ 2I°R},y, (5.84)

This correctly reproduces the result®® obtained in Refs. [40] and [93], where the Weyl
anomaly was calculated by perturbatively solving the equation of motion near the bound-

ary and by looking at the logarithmically divergent term, as in Ref. [31].

For the case of N/ =2 superconformal USp(N) gauge theory in four dimensions, we

choose 2x2 such that
12K = Vol(S°/ Z,) (radius of S®/Z,)°2k?, (5.85)

where 2k? = (27)7g? is the ten-dimensional Newton constant [94], and the radius of S°/Z,
could be set to (8mg,N)'/* [41]. In this relation, we note the replacement N — 2N as
compared to the AdSsx S° case. This is because here we must quantize the RR 5-form flux
over S5/ Z instead of over S° [39]. For the AdSs radius [, we may also set | = (87g,N)/4.
Setting the values a = b = 0 and ¢/2[*> = 1/32N + O(1/N?), as determined in Ref. [40],
we find that the Weyl anomaly (5.84) takes the form

(T7)g = N*2m* [(—124 + 148N) R* 4 (18 — 332N) R}, + 132N R?,},| + O(N") (5.86)
This is different from the field theoretical result [34],

(I7)y = N?27% [(—=124 — 132N) R* 4 (18 + 116N) R}, + 132N R, ] + O(N°) (5.87)

32The authors of Refs. [40] and [93] parametrized the cosmological constant A as

A= —d(d—1)2L*,
so that their L is related to our [, the radius of asymptotic AdS, as

P=L*[1—(d—3)(d—1)L*(d(d + 1)a+db+2c)].
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As was pointed out in Ref. [40], the discrepancy could be accounted for by possible
corrections to the radius [ as well as to the five-dimensional Newton constant. In fact, if

these corrections are

[ = (87g,N)/* (1 ' %) ,

then the field theoretical result is correctly reproduced for 3¢ +n = 5/4.

1 Vol(5°/Z,) (87mg,N)>/*
2k 22

(1+nN),  (5.88)

6 Conclusion

In this article, we have investigated various aspects of the AdS/CFT correspondence and

the holographic renormalization group (RG).

In §2, we gave a review of the basic idea of the AdS/CFEFT correspondence and the
holographic RG, and calculated the scaling dimensions of the scaling operators which are
dual to bulk scalar fields in the AdS background. As a typical example of the AdS/CFT
correspondence, we considered the duality between the N' =4 SU(N) SYM, and Type
I1B supergravity on AdSs x S°. As a consistency check for the duality, we showed the one-
to-one correspondence between the short chiral primary multiplets of the CFT and the
Kaluza-Klein spectra of supergravity. We also demonstrated the holographic description
of RG flows that interpolate between a UV and an IR fixed points, by considering the
example of an RG flow from the N' =4 SU(N) SYM, to the N' = 1 Leigh-Strassler fixed
point. The “c-function” was defined from the view point of the holographic RG, and

shown to obey an analog of Zamolodchikov’s c-theorem.

In §3, we explored the formulation of the holographic RG based on the Hamilton-
Jacobi equation of bulk gravity given by de Boer, Verlinde and Verlinde. A systematic
prescription for calculating the Weyl anomaly of the boundary CF'T was proposed. We
also derived the Callan-Symanzik equation for n-point functions in the boundary field
theory. We calculated the scaling dimensions of scaling operators from the coefficients of
the RG beta functions, and showed that they are in precise agreement with known results

in the AdS/CFT correspondence.

We discussed the holographic RG in the framework of the noncritical string theory
in §4. In the holographic RG, we must introduce an IR cutoff to regularize the infinite

volume of the bulk space-time, and the (FEuclidean) time development of fields in the
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gravity theory is required to be regular interior of the bulk. We demonstrated that this
basic requirement in the holographic RG can be understood naturally in the context of

noncritical strings.

In §5, the holographic RG for R? gravity was investigated. In general, when we
work in the Hamiltonian formalism, we must introduce new valuables which we call the
“higher-derivative modes.” We introduced a parametrization of the metric in which the
Euclidean time evolution of the system can be directly interpreted as an RG transforma-
tion of the boundary field theory. We examined classical solutions of the system under
this parametrization. We found that the stability of an AdS solution depends on the
coefficients of the curvature squared terms, and the fluctuation of the higher-derivative
mode around a stable AdS solution is interpreted as a very massive scalar field in the
background of the AdS space-time. In the AdS/CFEFT correspondence, this means that
the fluctuation of the higher-derivative mode corresponds to a highly irrelevant operator
of the boundary CFT. Thus, we must fix the boundary values of higher-derivative modes
at stationary values in order to implement the continuum limit of the boundary field
theory. We discussed that the condition is automatically satisfied by adopting the mixed
boundary condition, that is, the Dirichlet boundary condition for the usual valuables
and the Neumann boundary condition for the higher-derivative modes. We also discussed
that when the coefficients of the curvature squared terms satisfy an appropriate condition,
there appears another conformal fixed point in the parameter space of the boundary field

theories.

Using the prescription with the mixed boundary conditions, we derived a Hamilton-
Jacobi-like equation for R? gravity which describes RG flows of the dual field theory. As
an application, we calculated the 1/N correction of the Weyl anomaly of N =2 USp(N)
supersymmetric gauge theory in four dimensions. We found that the result is consistent

with a field theoretical calculation.

We here make a comment on field redefinitions of bulk gravity in the context of the
AdS/CFT correspondence [98]. The AdS/CFT correspondence should have the prop-
erty that any physical quantities of the d-dimensional boundary field theory calculated
from (d + 1)-dimensional bulk gravity are invariant under field redefinitions of the fields
in ten-dimensional supergravity. This is because ten-dimensional classical supergravity

represents the on-shell structure of massless modes of superstrings, and the on-shell am-
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plitudes (more precisely, the residues of one-particle poles of correlation functions for
external momenta) should be invariant under redefinitions of fields [95] (see also [96] for

discussions in the context of string theory).?3

As an example, let us show [98] that the holographic Weyl anomaly of the NV = 4
SU(N) SYMy does not change under the field redefinition of the ten-dimensional metric

of the form
GMN — G/]\/[N EGMN—FOZRGMN—i—ﬁRMN. (61)

The bosonic part of the ten-dimensional Type IIB supergravity action is given by

Si=-— [dxV"G (7 (R +4|d¢|*) — 14 |F5)?] . (6.2)

~ 5.2
2K7)

In the context of the AdS;/CFT, correspondence, we are interested in the AdSsxS®

solution that is realized as the near horizon limit of the black 3-brane solution:

12 r? o
ds® = — dr® + Wi dz'dx? + 1% d2,
r
(Fs)r0123 = —4g, T3l4, (F5)y1---y5 = 4g, 547

e? = g,. (6.3)

Here, dQ)2 is the metric of the unit five-sphere and i, j € {0,1,2,3}. In this case, the AdS;

and S° have the same radius, I/, whose value is determined by the D3-brane charge as
| = (4mg,N)V4, (6.4)

where NV is the number of the coincident D3-branes, and we have set the string length
ls to 1. The action of the effective five-dimensional gravity is given by compactified the

ten-dimensional action (6.2) on the S°:
S; = 7T3l52/$%og§/d5x\/ =l (12[2 + E) : (6.5)

The holographic Weyl anomaly calculated from this action is given in (3.64), which re-
produces the Weyl anomaly of the N' =4 SU(N) SYM, as mentioned in §3.3.

33See also [97] for recent discussion about scheme independence in the renormalization group structure.
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On the other hand, if we make the field redefinition (6.1), the obtained new ten-

dimensional gravity action is
glO[GMN] = S10[Gun + RGN + BRyn]

1
—/leX\/—G{eQ¢ [R+4|d¢|2 +aR?* + bR,y

— 5.2
2K%

+ aR|d¢|> + b RN 0y aw}
— 14|Fs|* + b8 R|F3|* — b4 14! RMN(Fg,)MPQRS(Fg,)A}QRS}. (6.6)

Here a and b are defined as
0 =4da+128, b= —4. (6.7)
The AdSs x S® solution for the action (6.6) is given by
ds? = (1 — 8bl’2) Ur? dr® + 71 gy datda? +17dQ3,
(F5)ro123 = 4 (1 ¥ 8bl’2) P (B = 4g, (1 _ 8bl’2) ",
e? = g, (6.8)

where the new radius of the S° is related to [ by

I = (1 + ?—f) l. (6.9)

Note that after the field redefinition, the radius of S°, I, differs from that of AdSs, L,

which is expressed as
L=(1-40®)1 = (1= 20) L (6.10)

From the solution (6.8), we compactify ten-dimensional spacetime on S° of radius /.

Then, the (dimensionally reduced) five-dimensional action is obtained as

5
~ U

S. (1 + 40a + 4bl’2> X

et 72 2
2K109;

/ &zr/—§ [(1%’2 — 80a — 80bl’4> + R+aR?+ bfifw] . (6.11)
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This action has an AdS; solution with radius (1 —4b/1 2) I', which is consistent with the
AdS; x S® solution (6.8). The corresponding Weyl anomaly is calculated by using the
formula (5.84) as

(T) = 20°262 (1 — d0a + 8% ) (—1242 + 18R2)

1= 1600%) (—124R2 + 1SR?,)

124R* + 18R;)

d
27rl’<
(-

(-

124R* + 18R})) . (6.12)

This is identical to the result (3.64) [98].

We conclude this article by making a few comments on future directions in the

AdS/CFT correspondence and the holographic RG.

Once we start with AdSg,, gravity with d > 4, the dual d-dimensional conformal field
theory is in general at a non-trivial fixed point, because operators of the dual CF'T coupled
to bulk modes have non-trivial anomalous dimensions. It is thus natural to conjecture that
any CFT in higher dimensions which has an AdS dual is a non-abelian gauge theory.?* In
fact, all the known examples of the AdS/CFT correspondence involve non-abelian gauge
theories. Furthermore, a non-trivial fixed point for d > 4 seems unlikely besides non-
abelian gauge theories because of triviality. It would be nice to study the conjecture in
more detail. In particular, it is interesting to investigate if there is a chance to gain the

information on the gauge symmetry of the boundary theory only from bulk supergravity.

The equation (3.30) seems to imply some hidden symmetry in bulk. In fact, the form
of (3.30) is reminiscent of a scalar potential of supergravity with W (¢) a “superpotential.”
Moreover, as pointed out in [16], holographic RG flows can be described by first-order
differential equations via the superpotential. These facts might suggest that bulk gravity

has a hidden supersymmetry or some novel symmetry.

To show the gauge/string duality from the loop equations of the Yang-Mills theory
[100, 101] is an old but fascinating idea [102]-[108]. A strong coupling analysis in lattice

gauge theory [3, 109] shows that elementary excitations in gauge theory are strings of

34The situation is different when d < 3. Actually, an AdSy dual of the the critical O(NN) vector model

in three dimension is proposed in [99].
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color flux, and the interaction of strings would be suppressed in the large N limit, as
mentioned in Introduction. It is thus reasonable that we can describe a gauge theory in
terms of strings of color flux. In this framework, a gauge theory would be described by

the Wilson loop;

W(C(s)] = <TrP exp (z 740 d:r“Au) > (0< s < 2m) (6.13)

where s parametrizes the contour C. The Wilson loop (6.13) has a reparametrization
invariance s — s'(s). Here we can allow for the §'(s) to “go backward” on the way of
s € [0,2n], that is, ds'(s)/ds can vanish at some s. This characteristic symmetry of the
Wilson loop is called the zigzag symmetry [103]. Fundamental equations that characterize

the Wilson loops are the loop equations, and written schematically as
L(s)W[C] =W « W, (6.14)

where L is the loop Laplacian and the right-hand side represents the interaction of two
loops (or intersection of a single loop) at a single point. For an accurate definition of the

loop equations, see the literature [100, 101].

The equivalence between gauge theory and string theory means that there is an open

string with its ends on the loop C' such that the functional W[C] defined by

wic] = /Dxi Doe el =1, ) (6.15)
satisfies the loop equation (6.14) and has the zigzag symmetry. Here ¢ and x' express
the Liouville field and matter fields on the string world-sheet, respectively. So far, lots
of efforts have been made to find the duality. For example, in Ref.[103], it is argued
that world sheet supersymmetry eliminates boundary tachyonic modes and the zigzag
symmetry is to be expected.?® It would be nice to pursue these ideas to gain a deeper

insight into the gauge/string correspondence.

As discussed in Introduction, the Penrose limit of AdSs x S® leads us to the maximally
supersymmetric pp-wave background, on which string theory is exactly solvable in the
light-cone gauge. From the exact result of the string spectra, Berenstein, Maldacena and

Nastase made a prediction about the anomalous dimensions of N' = 4 SYM composite

35We expect that this world-sheet supersymmetry might be enhanced to the space-time hidden super-

symmetry mentioned above.
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operators for N, J > 1 with N/J? fixed, expressed as exact functions of A = 4dwg,N =
g% N. In order to confirm this pp-wave/CFT correspondence, we have to compute the
exact anomalous dimensions from the field theory side. That computation was done in
[110], reproducing the exact anomalous dimensions. (For a related work, see [111]). So the
pp-wave/CFT correspondence is justified beyond the supergravity approximation. One
of the problems there, however, is that the holography is not manifest in the pp-wave
backgrounds. Since a Penrose limit zooms in the local geometry near a null geodesic of
a given background, the resulting background has a totally different boundary compared
to the original one. Thus the holographic rules in the AdS/CFT correspondence are no
longer valid in the pp-wave backgrounds. Although several attempts have been made
to understand how the holography works in the pp-wave backgrounds [112, 113, 114],
there still remain a lot of issues to be clarified. In particular, it might be possible to
formulate the holographic principle on a pp-wave background beyond the supergravity

approximation because the string theory on it is simple enough.
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A Variations of curvature

In this appendix, we list the variations of the curvature tensor, Ricci tensor and Ricci

scalar with respect to the metric.

Our convention g6

R* = oI, + T8 T7, — (X o),

VAo Ap— ov

R, = R’ R = G"R,,. (A.1)

Hpv?
36The sign is opposite to that adopted in Ref. [31].
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The fundamental formula is
1
5FZV = 3 G (VM 0GA+V, 060G\ — V) (5Gw,) ,
from which one can calculate the variations of curvatures:

SRM . = VoI —V,sT"

vAo

1
Rro = 5 [VNV(SGW — VaV,0G 0 — Vo V,6Gas + Vo V,6G

+ 5GHP Rpu)\a - 5GVF Rpu)\o'] ’

6R,, = % [V? (Vu8Gop + V,6G,,,) — VG, — V.V, (GP0G,) ],

)R = —0G,, R"™ +VIV"6G,, — \V& (G’“”(SGW) )
Here note that

Apy opv”

V., V,|0G\, = —0G,, R, — 0G\, R’
[ I } p p

B  Variations of S,.[g(z), ¢()]

In this appendix, we list the variations of Si.[g(z), ¢(z)].

Pure gravity:

If we only consider terms with weight w < 4 of the form
Stoclg] = / d'z/g (W — ®R + XR* + Y R;;R" + ZR;; R7™) ,

then we have
168 _ 1

(W —®R+ XR*+YR;R" + Z Rz‘jklRijkl> 9"

(B.1)

+ @R~ 2X (RRY — V'VIR) Y (2R R = 2V, V' R7* 4 V2R

. , - 1 iy
—QZ<RZ T A VA ,d”) - (2X +5 Y) 97 VR,

and thus
1 Sk d d—2 d—4
ﬁgzjﬁtj — §W—T¢>R+T(XR2+YRZ~]RJ+ZRZ-]-MRW)

— <2(d ~ DX + g Y + 22) V*R.
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In the last expression, we have used the Bianchi identity: V'R;; = (1/2)V;R.

Gravity coupled to scalars:

For Sioc[g, @] of the form

1 -
Sulg o] = [ dioy5 (W(6) - 2(@)R + JMa(0)0500" ) (Ba)
we have
1 056 1 1 aak b\ ij
e de 2 (W dR + 2Mab8k¢ 0 ¢)g
TR 4 g7V - VIVIB — My 06" 0, (B-5)
1 5510(3 _ aaW o aa¢) R — Mab V2¢b — F((zj,\l/)lc) az¢b aigbcy (B6)

VG 00"

where T2 ) = M (¢ ) ¢) is the Christoffel symbol constructed from M, (o).
be d;be

C ADM decomposition

In this appendix, we summarize the components of the Riemann tensor, Ricci tensor and

scalar curvature written in terms of the ADM decomposition.?”

In the ADM decomposition, the metric takes the form

ds® = G, dX'dX"
= N(z,7)%dr + gy, 7) (dx“r)\i(:z:,f)dr) (d:z:j +)\j(:z:,r)dr>. (C.1)

Here we use the following basis instead of the coordinate basis 9,
In this basis, the components of the metric are given by

g(en,en) g(en,e; 1 0
i(A A) fi(A AJ) _ ‘ (©3)
g(ej,en) gleiej) 0 gij

37In this appendix, we use a different convention from that we have used this article; that is, quantities
in the (d+ 1)-dimensional manifold wear a hat ~ while quantities in the d-dimensional equal-time slice do

not.
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For the purpose of computing the Riemann tensor in this basis, it is useful to start with

the formula
R, e = R(6,,6,)¢,
— V6. V2| %~ Ve @
Each component can be calculated explicitly by using the equations
v
Veen = K&,

Ve,€j = INON G + (KF + 1N 9;3%) &,

o

~ ~ ko~
.€j = —Kijeﬁ + Fij €L,

V@gﬁ = —1Ngkl 8kN€l,

(C.5)

where Kj; is the extrinsic curvature and Fé-k is the affine connection with respect to g;;.

We thus obtain
éz’jkl = Rijp — KKy + Ky Kjy,,
Raju = Vi, — Vi K,
Rajm = (K?)j — Ly,

with

K;; = 12N (gw + vi/\j + vj)‘i) )

Lj=1N (Kij — NV — VA Ky — VM K + vivjN> .

The components of the Ricci tensor ﬁ,w = ﬁpupy = Euu are given by
Rij - Rz‘j + 2(K2)Z] - KKZ] — Lij7
Rip = V'K — VK,
~ ) .
Ran = Kij —4g ]Lij )
and the scalar curvature is

R=R+3K% — K*—2¢"L,

= R K3+ K= 2N (K + \ (VAN = VK) ),

where we use the fact

gLy = IN [K + Vi (VN = XK)| + (2K3 - K2).
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D Boundary terms

In this appendix, we supplement the discussion of the possible boundary terms in (5.13).

In this appendix we omit the hat on the bulk fields.

We first consider the infinitesimal transformation
7t — 2 =o'+ €(x,T), T—7 =7+¢(x, 7). (D.1)
Under this transformation, IV, \; and g;; are found to transform as

IN' = IN(1+ ¢ — Nde),
/\; = )‘z — &-ej)\j — 6/\Z — aie (N2 + )\2) _ gijéjy
9i; = 9ij — 0i€"grj — 0j€" gix — Dje A\ — Dje . (D.2)

)

Furthermore, I, the affine connection defined by g;;, transtorms under the diffeomor-

phism (D.1) as
[, =Dl — 0, Ok + T O’ — i 9;¢™ — T 9™ + 01, (D.3)
with
0Tl = =NV, Ve — 0;eViN — 04eV N — Ng'(9e Kiy, + Ope Kij — e Kji). (D.4)

Note that SFék does not contain €. From these relations, it is straightforward to verify

that the extrinsic curvature transforms as

Kz{j = Kij - &-el Klj - 8kel Kjl
+ NVZ‘V]'G + @e (8JN - )\lKjl) + 8je (&N - )\lKlj). (D5)

We can also show that the Riemann curvature R';,; transforms under (D.1) as

—Ope1; + Ol + VoI, — VoI, (D.6)

As argued in §5, we focus on the diffeomorphism that obeys the condition (5.15). This
is equivalent to the following relation in an infinitesimal form:
Oie(t=1) = 0. (D.7)
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Therefore, we find that the boundary action in (5.13) is invariant under this diffeomor-

phism.

We remark that in the above, we have discarded boundary terms of the form
S}, = / d*z\/g (K Li; + Kg“ Ly;) (D.8)
X4

although these are allowed by the diffeomorphism.?® The reason is that if there were such
boundary terms, they would require us to further introduce an extra boundary condition,

since

PP

E Example of derivation of the Hamilton-Jacobi-like equation

We briefly describe how the Hamilton-Jacobi equation (5.49) is solved. For simplicity, we
consider the case N =1 and focus only on the upper boundary at 7=t¢. Motivated by the

gravitational system considered in the next section, we assume that the Lagrangian takes

the form
L(q,4,4) = Lo(q,q) + cL1(q, ¢, 4), (E.1)
where
Lo(q,4) = 12my(0)d'¢’ — V(q),
Li(g,4,4) = 12n5(q)q'¢ — Ailq, 97" — ¢(¢, ), (E.2)
with

Ailq. ) = aip(@)d'd* + o (q).
8(a,4) = S ()i i d + 62 (0)d'd + ¢ (q)- (E-3)
We further assume that the determinants of the matrices m;;(¢) and n;;(q) have the same

signature. Following the procedure discussed in §5, this Lagrangian can be rewritten into

the first-order form

L:pq_'_PQ_H(an;p:p)a (E4)

38By definition, the (d + 1)-dimensional scalar curvature R is a scalar. It thus follows from (C.10) that

L;j(T=m1y) transforms as a tensor under the diffeomorphism with (D.7).
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with the Hamiltonian

H(q,Q;p, P) = p:Q" — 12my;(q)Q'Q’ + V(q)
+ 12017 (q) (P, + cAi(q, Q) (P + c4,(0.Q)) +e0(0.Q),  (BS)

where n¥ = (n;;)~!. The Hamilton-Jacobi equation (5.49) is solved as a double expansion

with respect to ¢ and P by assuming that the classical action takes the form

g(ta% P) = 1\/531\71/2(t7Q7P) +§O(t7Q7 P) +\/E§1/2(t7% P) +C§1(t7% P)
+O(S?). (E.6)

After some simple algebra, the coefficients are found to be
Soipz = 12u7(9) PP + O(P),
So = Solt,q) = Pi9"Sy + O(P?),

51/2 = B Uij(Q)njk(CI) [Ffm alSO 0™ Sy + akV(Q) + nkl(Q)Al(qa 350361)}
+O(P?). (E.7)

Here,

0; = 00¢’", d' = m"o; (E.8)
and 1"; . 1s the affine connection defined by m;;. Also u* is defined by the relation

u (@) (@)mu(q) = n(q). (E.9)
Furthermore, Sy(t, q) = §O(t, q,P=0) and S(t,q) = S, (t,q, P=0) satisfy the equations

— 9S00t = 12m3;(q)0Se04'9Sed¢’ + V(q),
—0S,0t =mi;(q)9S10¢' 0S¢’
— 12n4;(q) (Tl 0850 0'So + OV (q)) (T4, 05 0" Sy + ¥V (q))
— Ai(q,0800q) (T, 0" S0 9'So + 'V (q)) + ¢(q, 05:9q) (E.10)

which can be expressed as a Hamilton-Jacobi-like equation for the reduced classical action
S(ta Q) :SO(ta Q) +c Sl(ta Q) + O(C2>:

—0S0t = H(q,p),  pi=050¢", (E.11)
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where

H(q,p) = 12m7(q)pip; + V (q)
+ ¢ [—12n4(q) (T ™' + 8V (q)) (T, 0™p" + ¥V (¢))
— Ai(q,p) (T}, p"p" + 0V (q)) + cb(q,p)} : (E.12)

It is important to note that H is not the Hamiltonian. In fact, the Hamilton equation for

H does not coincide with that obtained from (E.5).

F  Proof of Theorem

In this appendix, we give a detailed proof of Theorem, (5.52) and (5.53), for the action

t
S [ ar[Lala i) + eLe' 0 ) (F.1)
t/

where i runs over some values. In the following discussion, we focus only on the upper

boundary, for simplicity.

We first rewrite the zero-th order Lagrangian Lg into the first-order form by introduc-

ing the conjugate momentum pg; of ¢ as

S1a(r). ()] = [ [ — Hola, ) + Ll ) (F2)

through the Legendre transformation from (g, ¢) to (q, po) defined by

Poi = 8L08(ji(q, q) - (F.3)

From this, the equation of motion for py; and ¢' is given by
q' = OHyOpo;, (F.4)
poi = —0H0q" + ¢ [8L18qi — ddt (6L18q'i) + d*dr? (8L16qi)} : (F.5)

Let q(7), po(7) be the solution to this equation of motion that satisfies the boundary

condition

q¢(r=t)=¢" (F.6)

Since this condition determines the classical trajectory uniquely [together with the lower

boundary values ¢(7=t') = ¢’* that we have not written here explicitly], the boundary

7



value of py is completely specified by ¢t and ¢: po(T=1t) =po(t, q). By plugging the classical
solution into the action S, the classical action is obtained as a function of the boundary

value ¢* and t:

S(t,q) = S[q(7), po(7)]- (F.7)
In order to derive a differential equation that determines S(¢, ¢), we then take the variation

of S(t,q). Using (F.4) and (F.5), this is easily evaluated to be

08 = ot [pmc}" — Ho(g,po) + ¢ L1(g. g, éj)]
+0q'(t) [poi + ¢ (0L104' (g, . §) — ddr (0L19G'(7.4,7))| _,)]
+¢64 (t) 01194 (q, ds ), (F.8)
where

§' = dg'dr(T=t), i = d*qdr*(r=t), (F.9)

and 6g'(t) and 87 () are understood to be 6 (7)|,—; and d 67 (7)/dr|.,, respectively. By
expanding the classical solution ¢'(7) around T7=t, we find that the variations §¢‘(t) and
54 (t) are given by

5T (t) = o¢' — ¢ ot, 64 (t) = 0" — § bt (F.10)
Here it is important to note that ¢ can be written in terms of ¢ and ¢, since the classical

solution is determined uniquely by the boundary value ¢q. Actually it can be shown that
54" = 0*HoOq’ Opo; 67 + 0° HoOpoipo; Opo;
= 82H08qj8p0i 5qj + 82H08p0ip0j (8p0j8t5t + apojaqkéqk) s (Fll)

where we have used (F.4) as well as the fact that pg = po(t, ¢). From these relations, the

variation (F.8) is found to be
65 = p; 6q" — H(q, p) dt, (F.12)
with
pi = poi + ¢ [00,194'(q, 4, §) — ddr (01104 (4,4, 7)) .,
+0L,0§ (9* HyOq'Opo; + 0° HoOpo;OporOpordq')] (F.13)
H(q,p) = Ho(q; po)
+e[=Li(g,4,9) + ¢' (1104 (q, 4, G) — ddT (0L, (4,4, D)) |, _,)
+0L10§" (G — 0° HoOpoiOpojOpo;Ot)] . (F.14)
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In order to compute H (q,p), we first note that the Hamilton equation appearing in (F.4)
and (F.5) gives the relation

qZ = (92H0(9p0i8qj0H03p0j + 62H08p0iapoj (3p038qk6H0(9p0k + @pOk@t) . (F15)
It is then easy to verify that H (¢, p) takes the form
H(q,p) = Holq,p) — ¢ Li(q, 4, ) + O(c?). (F.16)

Here ¢* and ¢ in L; can be replaced by

0H,
Op;

fila,p) = {Ho(g.p). ¢'} = =—(q,p) (F.17)

and

filg,p) = {Hola,p),{Hola,p),q'}}
= 0*Ho0p;0¢’ (¢, p)OHo0p;(q,p) — 0°Hodp:Op;(q, p)OHodq’ (¢, p) , (F.18)

respectively, up to O(c?). This completes the proof of (5.52) and (5.53).
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